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Abstract—Token-inconsistency bugs (TIBs) involve the misuse
of syntactically valid yet incorrect code tokens, such as misused
variables and erroneous function invocations, which can often
lead to software bugs. Unlike simple syntactic bugs, TIBs occur
at the semantic level and are subtle - sometimes they remain
undetected for years. Traditional detection methods, such as
static analysis and dynamic testing, often struggle with TIBs
due to their versatile and context-dependent nature. However,
advancements in large language models (LLMs) like GPT-4
present new opportunities for automating TIB detection by
leveraging these models’ semantic understanding capabilities.

This paper reports the first systematic measurement of LLMs’
capabilities in detecting TIBs, revealing that while GPT-4 shows
promise, it exhibits limitations in precision and scalability.
Specifically, its detection capability is undermined by the model’s
tendency to focus on the code snippets that do not contain TIBs;
its scalability concern arises from GPT-4’s high cost and the
massive amount of code requiring inspection. To address these
challenges, we introduce LineBreaker, a novel and cascaded
TIB detection system. LineBreaker leverages smaller, code-
specific, and highly efficient language models to filter out large
numbers of code snippets unlikely to contain TIBs, thereby
significantly enhancing the system’s performance in terms of
precision, recall, and scalability. We evaluated LineBreaker
on 154 Python and C GitHub repositories, each with over 1,000
stars, uncovering 123 new flaws, 45% of which could be exploited
to disrupt program functionalities. Out of our 69 submitted fixes,
41 have already been confirmed or merged.

Index Terms—Semantic Bug, Large Language Model for Se-
curity, Token-inconsistency Bug, Logic Bug, Bug Detection

I. INTRODUCTION

Semantic bugs can cause significant damage in real-world
systems, leading to unexpected behaviors, security vulnerabil-
ities, and operational failures. Yet, these bugs are notoriously
difficult to detect because they often require a deep understand-
ing of program logic and context. In this work, we focus on the
automatic and scalable detection of Token-Inconsistency Bugs
(TIBs)1, a subclass of semantic bugs which is challenging for
existing approaches.

∗Equally contributed to this work.
†† These two authors were in Samsung Research America.
1To differentiate between lexical tokens in programming languages (e.g.,

variable names) and basic text units in natural language processing (e.g.,
subwords), we use the terms "code token" and "text token" respectively.

Token-Inconsistency Bugs. TIBs are introduced when syntac-
tically valid code tokens — such as variables, calls, and oper-
ators — are placed incorrectly, leading to subtle yet impactful
flaws. For example, Listing 1 demonstrates a TIB detected
by our tool in WolfSSL - a security-sensitive project with
over 2.3K GitHub stars, where a redundant sizeof() call
leads to incorrect buffer size and memory errors. In Figure 1,
quote() mistakenly takes the argument query rather than
params, disrupting normal program logic. These syntactically
valid but semantically incorrect bugs are frequently introduced
by developers [62], leading to several security consequences
such as control/data flow integrity violations, denial of service,
etc. [34], [28], evidenced by CVEs assigned to TIBs (e.g.,
CVE-2022-30780, CVE-2022-23574, and CVE-2020-8889).
socklen_t xSize = sizeof(struct freertos_sockaddr);
xSocket_t xClientSocket = NULL;
struct freertos_sockaddr xRemoteAddress;
...
FreeRTOS_bind(xClientSocket, &xRemoteAddress,

sizeof(xSize) xSize );

Listing 1: An example TIB: sizeof(xSize) in red is buggy; the
correct code xSize is in green.
Difficulties in TIB Detection. Despite their security conse-
quences, TIBs often elude conventional detection methods.
As in Figure 1, although a human reviewer might identify
the misplaced pair (query and params_quoted) from the
program’s context (path vs. path_quoted and query vs.
query_quoted), the buggy code lacks clear-cut patterns as
observed in vulnerabilities like use-after-free. Static analysis
struggles to capture such context-dependent bugs without
explicit rules, and dynamic testing (e.g., fuzzing) may fail due
to limited code coverage or subtle bug symptoms (e.g., logic
errors may not cause program crashes that are captured by
fuzzers). As a result, TIBs can remain undetected for years.
The TIB shown in Figure 1 had persisted in a popular GitHub
repository for seven years [18], and the bug in Listing 1 went
unnoticed for four years.
LLM-based TIB Detection & Challenges. Human developers
may identify TIBs by leveraging their capability to predict the
“correct” code token based on the program’s context, such as
the correlations between argument names and function names



Prompt: Find bugs in this Python code snippet.

def quote_url(url_text):
(scheme, netloc, path, params, query, fragment) =

six.moves.urllib.parse.urlparse(url_text)
# netloc_quoted = quote(netloc)
path_quoted = quote(path)

params_quoted = quote( query params )

query_quoted = quote_plus(query)
fragment_quoted = quote(fragment)
url_quoted = six.moves.urllib.parse.urlunparse(...)
return url_quoted

Output by ChatGPT-4: The code snippet you provided has a couple of issues that could
be causing problems:
1. Incorrect usage of the quote function for params: In the code, params_quoted
= quote(query). This line mistakenly passes the query to the quote function
instead of params. It should be params_quoted = quote(params).
2. Potential Misuse of quote vs. quote_plus: Using quote_plus for the query is
appropriate, but if any other component requires handling spaces as +, then quote_plus
should be used accordingly. Conversely, if spaces should be encoded as %20 in the query,
then quote should be used instead of quote_plus
Another false alarm and a corrected code snippet are truncated.

Figure 1: An Example of ChatGPT detecting an existing bug. The
variable query in the red rectangular is buggy.

in Figure 1 and between variable and function semantics in
Listing 1. Recent advances in large language models (LLMs)
offer a similar predictive capacity: given a partial code, the
LLM can predict the most likely subsequent tokens. Any
inconsistency between the actual code and the prediction result
could indicate a potential TIB. Moreover, unlike previous ML-
based semantic bug detectors that need training on datasets
tailored to specific programming languages [8], [64], [53],
LLMs are pre-trained on massive corpora, providing them
with generality across different languages and flexibility, often
requiring little to no additional training. For example, on our
constructed benchmark dataset, which includes 100 synthe-
sized TIBs in 5.7K lines of Python code, GPT-4 can capture
up to 72% of them with proper prompts (§II-C).

Despite promising preliminary results, LLMs are not ready
for comprehensive, highly scalable, and reasonably accurate
TIB detection. Current models typically restrict the input/out-
put token length, making it difficult to incorporate the en-
tire code base into them. For example, Pytorch has roughly
1.4 million lines of code, which can overwhelm GPT-4o’s
128k context length. However, slicing large codebases and
iteratively prompting capable off-the-shelf LLMs can be pro-
hibitively expensive (e.g., the API cost increases quadratically
with code size under an LLM-based detector, FLAG [5]).

Furthermore, LLMs’ answers can be error-prone, as pointed
by OpenAI [4] and corroborated by our measurements, leading
to many false reports in TIB detection; half of the functions
sampled from popular GitHub repositories are marked “buggy”
by GPT-4. Often, these reports occur because the model is dis-
tracted by code contexts unrelated to the targeted flaws [60].
For example, in Figure 1, GPT-4 flags quote_plus incor-
rectly, probably due to it being distracted by plus.

Our Solution. To address those challenges, we introduce

lightweight models for TIB detection and cascade models
of different sizes, capabilities, and efficiency in a unified
analytical model to seek a balance between accuracy, cost,
and effectiveness through optimal selection (§III-A). We also
improve LLMs’ performance on TIB detection using meticu-
lously designed prompt structures (§III-C) and token genera-
tion algorithms (§III-B), as motivated by the measurement.

Exploring the design space through this analytical model,
we propose LineBreaker, a TIB detection pipeline (§III).
It first performs static analysis, enumerating code tokens that
may involve TIBs. Then, LineBreaker utilizes lightweight
language models to filter potential TIBs locally. We compare
predicted tokens with the original tokens, and any difference
indicates a potential TIB worth further inspection. Applying
such a filter several times efficiently excludes most TIB-free
positions, boosting the TIB density and detection precision.
Finally, the remaining suspicious TIB sites are uploaded to
a SOTA model for in-depth analysis. This cascaded design
significantly reduces costs, since smaller, faster, and cheaper
models filter out most faults. It also improves the precision
of TIB detection, as the final SOTA model can thoroughly
analyze a much smaller yet more relevant set of potential
buggy locations, mitigating the distraction problem.

Findings. We extensively evaluated LineBreaker on large-
scale real-world datasets. LineBreaker successfully dis-
covered 123 new TIBs in popular C and Python repositories
on GitHub with more than 1K stars. We submitted 69 pull
requests, and developers have acknowledged 41 of them.
LineBreaker also achieves an improved precision (up to
36.36%) compared to an existing technique for detecting
semantic bugs in real-world code (only 12.0% [6]). It also
maintains practical monetary cost, spending only $92. Further-
more, the explanation provided by the LLM pipeline enables
a human expert to conveniently identify the true bugs in the
filtered code snippets. We responsibly reported all bugs and
vulnerabilities to the relevant developers.

Contributions. We summarize our contributions as follows.

• Study (§II). We report the first comprehensive measurement
study on the capabilities of various LLMs in TIB detection,
shedding light on their strengths and limitations.

• System (§III). Based upon our measurement study and
analytical model, we develop LineBreaker, a cascaded
pipeline integrated with new mechanisms to enhance LLMs’
performance in TIB detection. LineBreaker is both prac-
tical and efficient for various languages. The LineBreaker
is publicly available.2

• Findings (§IV). We use LineBreaker to perform the
first TIB detection in real-world code at scale, detecting 90
and 33 previously unknown TIBs, respectively, from popular
Python and C repositories. 45% of them have various security
implications. We have submitted 69 fixes, of which 41 have
been confirmed or merged.

2https://github.com/Gao-Chuan/LineBreaker



▁<PRE>def quote_url(url_text):
    ...
    params_quoted = quote(▁<SUF>)

...
    return url_quoted▁<MID>

Prompt to Code-specific Model: Token Prob
params 0.92
""" 0.03
query 0.01
... ...

Generate the 
Next Token

Original Token
query

Sub.
Inconsistency

Detected!

Figure 2: TIB detection using code-specific LLM.

• Dataset. We curated a comprehensive dataset of TIBs from
historical bug fixes, new bugs discovered by LineBreaker,
and our synthesized ones. We will release it for future research.

II. MEASUREMENT STUDY

To optimally leverage LLMs for TIB detection, it is essential
to understand their performance in this specific task. In this
section, we comprehensively evaluate the performance of
various language models, encompassing the SOTA model and
smaller open-source models designed for coding tasks.

A. Language-Model based TIB Detection

Instruct Large Language Models. Represented by OpenAI’s
GPT-4 model family [4], instruct models are trained on vast,
diverse corpora. This allows them to process tasks effectively
in various domains, including software security. However, they
are often proprietary (e.g., GPT-4) and expensive to use at
scale, restricting their adaptability and making experimental
modifications infeasible. Furthermore, these models are also
prone to producing inaccurate or fabricated responses due to
distraction and well-documented “hallucination”, leading to a
high false rate in TIB detection. The false positive case in
Figure 1 exemplifies this concern.

Code-specific Language Models. Recent efforts have pro-
duced models specialized for code-related tasks, such as code
generation and completion. These models share a similar
transformer-based architecture that generates token probabil-
ities based on context. CodeBERT is a bidirectional encoder
model pre-trained on masked token infilling tasks [24], en-
abling it to predict masked tokens in the middle of a snippet.
However, its context length is strictly limited to 512 to-
kens, making it impractical for real-world applications. Recent
models adopt a decoder-only transformer design, generating
tokens sequentially. Despite their unidirectional nature, some
are trained on fill-in-the-middle (FIM) tasks, enabling code
infilling like CodeBERT. While not as powerful as GPT-4 in
some respects, these open-source code-specific models offer
broader accessibility and opportunities for customization.
Example. Code-infilling can naturally and novelly support TIB
detection by comparing the original tokens against a model’s
predicted tokens. If the predicted tokens differ, this indicates
a potential bug. For instance, when feeding the buggy code
snippet in Figure 1 into a code-specific model supporting FIM
as in Figure 2, the model recommends params as a more
contextually appropriate token, strongly suggesting a TIB.

B. Dataset Preparation

Since no dedicated datasets for TIBs exist, we constructed
bipartite datasets to evaluate key metrics, including recall
and specificity. To mitigate memorization and contamination
concerns, we sampled code snippets from popular (>1k stars)
Python repositories on GitHub committed after the LLMs’
knowledge cutoff date. Functions were grouped by length
and proportionally sampled to maintain a comparable context
length distribution. The resulting dataset, D, contains 1,000
manually verified functions, all of which are free of TIBs.

We also implement a process akin to prior code token
mutation methodologies [55], [51] to introduce synthesized
TIBs on the dataset D, obtaining a synthesized dataset D′. D′

comprises artificial yet plausible TIBs suitable for, e.g., recall
evaluation. This process is initiated by enumerating all permis-
sible code token candidates that could feasibly replace another
token without causing syntax errors. Permissible candidates
span over four types of code tokens: variable uses, function
calls, operators (e.g., >= and or), and literals (e.g., integer).
We then select a substituted TIB token with slight semantic
divergence based on embeddings from MPNet [57], reflecting
common confusion between tokens with similar semantics.
Function snippet in D′ has a single TIB. Three security experts
independently validated the datasets and then convened to
discuss and resolve all identified inaccuracies.

C. GPT-4’s Performance on TIB Detection

To assess the TIB detection capabilities of general-purpose
LLMs, we selected GPT-4 models for their superior perfor-
mance [60], [58], [66] and API’s support for JSON output.

Prompt Design. In-context examples do not significantly
improve GPT-4’s accuracy in identifying vulnerabilities [58].
Therefore, given the diverse nature of TIB patterns, we opted
for zero-shot prompts to avoid the influence of potentially
irrelevant examples [56]. Specifically, we utilized various tem-
plates and conducted multiple rounds of interactive prompts.
These templates incorporate various prompt engineering tech-
niques, including Chain-of-Thought (CoT) [65] and cross-
examination [19]. Drawing on the prompt engineering methods
introduced in [67], we assigned the role of a programmer to the
LLM and provided it with an output pattern. Additionally, fol-
lowing the prompt taxonomy and templates proposed in [32],
we outlined the workflow steps to offer detailed instructions
to the LLM on effectively processing the given prompt.

We illustrate an example of a template configuration in
Figure 3, which represents a simplified version of the one
ultimately adopted by LineBreaker. The system prompt
instructs the model to assume the role of a programming
language expert (i.e., persona adoption [48]). In the initial
round, the model is requested to identify potential buggy
code lines and provide explanations. The second round fur-
ther cross-examines the identified potential TIBs to minimize
false positives. Additionally, we incorporate three selectable
properties in this round: self-evaluated bug categorization,
fix proposal, and token-level predicate. The details of these



Table 1: Analytical properties for TIB detection and inspection in JSON-formatted tool calling.

Property Abbr. Type Description Purpose Prompt Tec.
code_line / Mandatory the exact line of code with semantic bug locating the bug /
explanation / Mandatory a concise explanation of this bug reasoning about of the bug /
token_level T Selective the bug appears is related to single/few tokens filtering out non-TIB bugs Cross-exam.
fixed_line F Selective the line with the bug fixed CoT for token_level and fixing CoT
category Ca Selective the category of this bug filtering out non-semantic bugs Cross-exam.
priority P Selective the priority level of this bug: high/medium/low filtering out less interesting bugs Cross-exam.

System: You’re a language expert. Your job is to inspect if the code
contains any semantic bugs. Semantic bugs are a type of bug that occurs
when the code is syntactically correct but does not behave as intended or
produces incorrect results. These bugs arise from mismatches between the
programmer’s intended logic and the actual implementation in the code,
where incorrect variable/method name usage or assignment can lead to
bugs or vulnerabilities in the program.
Implement your work by the following steps:

1. Check the given code line by line.
2. For each line, extract the variables, calls, operators, and literals in

this line.
3. Check whether the extracted variables, calls, operators, and literals

are correctly used in the statements.
4. If there is no wrong usage in any line, return the code is correct;

otherwise, record each line of the bug and the reason for the bug.
Assume the code is syntactically correct and input parameters to the
functions are well-formed and valid. Focus solely on detecting semantic
bugs, and ignore other problems. Return your response in JSON format.

User Prompts
Round 1 Properties: Mandatory: {code_line, explanation}
Round 1 User Prompt: {code for detection} Output exact lines of semantic bugs
and concise explanations.
Round 2 Properties: Mandatory: {code_line, explanation};
Selective: {fixed_line, token_level, category}
Round 2 User Prompt: Inspect these bugs, excluding 1. incorrect or unlikely bugs; 2.
non-semantic bugs. Check the left bugs only break the intended functionality or lead to
vulnerabilities. Finish the following tasks: 1. Answer if the bug is related to a single or a
few tokens. 2. Using the code and previous contexts, classify the bugs into these categories:
Security Vulnerability, Logic Bug, Enhancement, Unexpected Behavior, Symbol Not
Defined, Module Not Imported, Bad Smell, Not a Bug, or Others. Note that the snippet
is from popular repositories and runs, so correct symbols not defined in the snippet might
be defined at other places, and you can regard it as Symbol not Defined. If you assign
Others category, explicitly name the category.

Figure 3: Example: a two-round prompt template (1/2FTCa).

properties are summarized in Table 1. Mandatory properties
are adopted to identify bugs, while selective properties are
employed for filtering. Multi-round prompting enhances effec-
tiveness; for instance, allowing GPT-4 to reflect on its prior
results, facilitating the exclusion of potential false alarms (i.e.,
cross-examination). Depending on the properties required in
each round, prompts for querying these properties can be
automatically generated under various template setups. If the
property in Table 1 is selected in a round, the digits represent
the number of the round, and the alphabetic abbreviations
represent chosen properties. For instance, the template in Fig-
ure 3 is denoted as 1/2FTCa. Please refer to our supplementary
material for other prompt templates.

Measurement Results. Our objective is to assess the perfor-
mance of various prompt templates regarding recall, speci-
ficity, and monetary cost. While each function in D′ con-
tains only one known TIB, the LLM may identify multiple

TIBs within the queried function. We adopt two statistical
approaches: 1) counting the number of lines flagged with
TIBs. Flagged lines are regarded as positive, as the model
is prompted to mark buggy lines; 2) counting the number of
entire functions, as the security engineer usually audits the
function as a whole. The metrics under these two approaches
are subscripted by L and F , respectively. To reduce the high
API costs, we evaluate all templates on subsets of D′ and D,
each containing 100 cases.

Table 2 presents the measurement results of prompt tem-
plates. We observe a high false positive rate when using a
single-round template with no selective properties, and GPT-
4 is directly asked to identify TIBs. This is primarily due to
distractions, as confirmed by selective manual inspection.

First, we unveil the effectiveness of selective properties
(in Table 1). Our findings indicate that the token_level
property is particularly effective at filtering out non-TIB in-
stances, which are not bugs associated with a few code tokens.
This filtering improves line-level specificity by up to 22.6% at
the cost of a 1% reduction in recall. Additionally, excluding
candidates whose category is not in {Logic Bug, Security
Vulnerability, Bad Smell} further enhances specificity. How-
ever, filtering based on priority ̸= high, while reducing
false positives, leads to missed bugs. This trade-off may be
attributed to GPT-4’s limited understanding of bug severity.

Next, we investigate the impact of iterative rounds. Intro-
ducing second and third rounds with varied properties yields
mixed results, with cross-examination occasionally reducing
false positives. However, adding a third prompt round proves
less advantageous regarding specificity, recall, and monetary
cost, as additional rounds increase token usage. This can be
attributed to superfluous cross-examination, where identified
bugs are unnecessarily filtered out. Distraction may also be
a potential root cause, as irrelevant information from previ-
ous rounds can misguide the LLM. As a result, two-round
prompting emerges as the optimal approach.

Furthermore, we evaluate the best overall prompt template,
1/2FTCa, on three models in the GPT-4 family, as shown in
Table 3. Interestingly, GPT-4 Turbo slightly outperforms the
newer GPT-4o on specificity with triple the cost.

Conclusion. We arrive at two primary conclusions:
(1) Template Selection. The template 1/2FTCa in Fig-
ure 3 shows anticipated overall performance. LineBreaker
adopted it with suspicious lines highlighted (§III-C).
(2) Limitations of GPT-4 in TIB Detection. Our study reveals
that GPT-4 demonstrates relatively high recall for TIB detec-
tion. However, its current performance remains insufficient for



Table 2: GPT-4o TIB detection on different prompt templates.

Template
Synthesized⊂ D′ Bug-free⊂ D

Cost
TPL FPL TPF FPF Rec. FPL E. FPL FPF E. FPF Spe.

1 81 203 72 28 72.0 404 0 29 0 0.0 $0.83
1FT 75 110 71 24 71.0 229 67 14 7 22.6 $0.88
1/2FT 79 79 67 33 67.0 298 89 24 7 23.0 $2.11
1/2FT/3P 57 99 55 36 55.0 211 73 20 10 25.7 $3.37
1/2FT/3Ca 72 129 66 31 66.0 245 43 19 10 14.9 $3.43
1/2FTCa 78 126 72 26 72.0 294 92 23 7 23.8 $2.14
1/2FTCa w/ HL 92 93 84 12 84.0 174 138 56 34 44.2 $2.07

Rec. refers to recall at the function-level and Spe. refers to filtering capability (i.e., specificity); XL and XF represent the numbers counted
at the line- and function-level; FP and E. FP represent the numbers of incorrect bugs reported and excluded.

Table 3: TIB detection performance of GPT-4 model family.

Model
Synthesized⊂ D′ Bug-free⊂ D

Cost
TPL FPL TPF FPF Rec. FPL E. FPL FPF E. FPF Spe.

GPT-4o 78 126 72 26 72.0 294 92 23 7 23.8 $2.14
GPT-4 Turbo 86 129 72 24 72.0 256 87 19 10 25.4 $6.82
GPT-4o Mini 86 242 64 33 64.0 388 92 29 4 19.2 $0.19

practical use. Even with the most effective “1/2FTCa” tem-
plate, a significant portion of TIBs is still missed. Moreover,
as TIBs in real-world code are relatively rare, relying solely
on GPT-4 for TIB detection would likely result in a high
false positive rate due to its limited specificity. As shown by
the specificity evaluated on D, many false positive reports
persist. Our investigation into some cases reveals that GPT-4
is overly cautious when evaluating software security, resulting
in the generation of false alarms. Consequently, more targeted
guidance is necessary to enhance the model’s performance.

D. Code-Specific Models on TIB Detection

While general-purpose LLMs can also perform code infill-
ing, their usage cost can quickly become prohibitive for large
codebases. For instance, GPT-4 costs approximately $2.1 to
infill every code token for a function of 40 lines of code,
which increases quadratically with code size. Therefore, we
focus on smaller open-source code language models in this
evaluation. The example in §II-A indicates that the code-
infilling capability of LLMs can also facilitate TIB detection.
TIB detection could leverage infilling because the probabilities
of correct tokens are significantly higher than those of buggy
tokens. We thus evaluate the performance of various code-
specific LLMs on TIB detection.

Hardware and Parameters. We conduct the experiments on
a Linux server with two AMD EPYC 9124 CPUs and one
NVIDIA H100 GPU. The temperature is set to 0.

Infilling Task Description. Code infilling is a foundational
capability of these code-specific models, enabling numerous
applications (e.g., auto-completion). Here, each infilling task
masks one code token and asks the model to predict that miss-
ing token. We aim to identify models performing accurately,
prompt organizations leading to better results, and potential
reasons for successful or failed infilling. Thus, regarding TIB
as positive cases, we evaluate three metrics:
• Specificity (Consistency). On the TIB-free D, if the model
predicts the same as the masked token, we consider it to have
no TIB. High specificity indicates fewer false alarms.

• Recall (Sensitivity). On the D′ of synthesized TIBs, if the
predicted token differs from the masked, a potential TIB may
exist. High recall indicates more detectable TIBs.
• Speed. This measures the time required to complete the
infilling task, reflecting scalability.

Similar to previous work [6], we intentionally avoid using
metrics like F1 score because the distribution of TIB varies
(e.g., on languages), and such distribution is unavailable. Fig-
ure 4 summarizes the results. Due to GPU memory constraints,
models exceeding 15B are excluded from our evaluation.
While our H100 GPU with 80 GB memory can success-
fully load these models, the practical memory requirements
extend beyond simple model loading. The self-attention mech-
anism, fundamental to transformer inference, induces space-
complexity quadratic in the input/output sequence length [33].
For example, the major memory requirements break down as
follows for CodeLlama 13B model quantized at FP16: ∼24 GB
for model weights (13×109×2 bytes) and ∼48GB for attention
layers of 4,000 tokens (40002×40 layers×40 heads×2 bytes).
Adding other components (e.g., activation and KV-cache),
inference with code length beyond 4,000 tokens could exhaust
GPU memory on our system. Therefore, cherry-picking the
input context becomes crucial for efficiency. We discuss po-
tential countermeasures in §VI. That said, our solution design
(§III) is orthogonal to specific models.

Measurement Results. Our findings reveal that models uni-
versally exhibit high recall (∼98%). However, specificity varies
considerably. StarCoder2 frequently fails to restore the original
tokens, whereas DeepSeek, CodeGemma, and Qwen models
achieve a specificity of 70–80%. Larger models in the same
family generally exhibit better specificity and recall but expe-
rience nonlinear slowdowns due to GPU memory constraints
when handling extended contexts.

A key factor affecting specificity is that models usually
overlook the validity of infilling results. Some models insert
irrelevant text, such as comments or extraneous statements,
because they are unaware of legitimate code token syntax.
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Figure 4: Code-specific models’ infilling performance.

Table 4: Infilling performance under different contexts.

Model Function File Sliced File
Name and Size Length Spe. Time Spe. Time Spe. Time
CodeGemma 2B 8K 71.2 441 19.8 5621 56.9 1442
StableCode 3B 16K 73.4 257 68.5 10657 71.2 989
DeepSeek 6.7B 16K 78.0 481 85.8* 9340 77.4 1638
Code Llama 13B 100K 53.6 11052 60.1* 8355 57.3* 5075
Qwen2.5 7B 32K 76.6 477 85.6 8773 75.1 11129

* Some tasks are excluded due to runtime errors (e.g., insufficient GPU memory).

Besides, function calls exhibit lower specificity than variables,
operators, or literals. We hypothesize that these results are
from missing function definitions or external context, which
models cannot infer from the snippet alone.

Constrained Token Generation. Some frameworks can im-
pose constraints on generated tokens [68]. We also integrated
Guidance [1] into our experiments and denote the metric
changes on the bars in Figure 4. By restricting generated
tokens through regular expressions or lists of candidates, speci-
ficity significantly improves (especially for Code Llama and
StarCoder2), albeit with a slight reduction in recall. However,
some models, like DeepSeek Coder, are incompatible with
Guidance due to byte encoder errors. Guidance also introduces
additional runtime overhead.

Context Dependency. We also explored different context
organizations: 1) Function: only the function definition, which
is used previously in Figure 4; 2) File: the entire file; 3) Sliced
File: function definition plus global variables and function
declarations in the file.

Table 4 shows that richer contexts can improve specificity
by up to 9% (e.g., DeepSeek Coder, Qwen2.5 Coder, Code
Llama). At the same time, the effect on recall is not sig-
nificant and is omitted from the figure. However, extensive
context truncation degrades performance for smaller models
like CodeGemma with stricter token length limits. We also
note that extended inputs incur slowdowns in inference, and
may even raise runtime errors due to insufficient GPU memory
(e.g., Code Llama 13B). Thus, context engineering should be

paired with various models for better overall performance.

Impact on Nearby Tokens. TIB can negatively affect the
infilling task in its nearby context. When a TIB presents in a
line, the specificity of the infilling tasks on other positions in
the same line drops 6%-7%. We further design a highlighting
prompt in §III-C to enhance the robustness of our pipeline.
A potential explanation is that TIBs increase the perplexity,
leading to larger uncertainty in token prediction [63]. This also
implies that inconsistent infilling results conducted on single
tokens may unveil bugs related to multiple code tokens.

Conclusion. We highlight these conclusions from our study:
(1) High Recall but Mixed Specificity. Most models detect
more than 97% of synthesized TIBs, showing strong sensitivity
to TIB. This could further foster TIB detectors where only a
few TIBs can evade. However, many models produce 15–30%
inconsistencies on TIB-free samples, even with constrained to-
ken generation and rich contexts. As no single model–prompt
configuration consistently excels across both performance met-
rics, TIB detection should not rely on a single model.
(2) Scalability Limitations on TIB Detection. Despite their
ability to filter out numerous true negatives, plenty of false
alarms can be fired. However, as TIBs in real-world code
might account for less than 1%, using a single model can result
in poor precision. Even though constrained token generation
and richer context can enhance specificity and mitigate this
concern, the enhancement is neither universal to arbitrary
models nor enough for a scalable detector. We need additional
measures to overcome this concern.

III. DESIGN AND IMPLEMENTATION OF LINEBREAKER

Inspired by the measurement, we present LineBreaker,
a system to detect TIBs effectively and efficiently in various
programming languages. Our objective is to build a TIB detec-
tor that is scalable, flexible, and language-agnostic. Motivated
by the examples and measurements, we believe that LLMs
are well-suited for TIB detection, potentially outperforming
other techniques for three reasons. First, transformer-based
models naturally handle context-dependent TIB. Semantically
incorrect code tokens, contextualized by surrounding code,
typically have a lower probability, plus LLMs could “under-
stand” code semantics. Thus, TIBs are detectable via infilling-
or prompt-based methods. Second, LLM-based approaches are
more flexible and general than specialized ML-based solutions,
which often rely on strict assumptions. For example, syntac-
tically similar functions must exist in target codebases [6].
Because LLMs are trained on massive multilingual corpora,
they inherently support different languages. Finally, LLMs can
further assist developers in fixing bugs by offering interactive,
natural-language explanations.

However, the measurement study (§II) also reveals short-
comings. GPT-4 and smaller code-specific models alone can-
not reliably handle TIB detection at scale because of ex-
cessive cost and/or impractical accuracy. Fortunately, Such
weaknesses can be mitigated with the synergy of SOTA and
lightweight models, leveraging the strengths of each category.
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Figure 5: Pipeline overview of LineBreaker.

The high expenses and FP rate of GPT-4 can be contained if
smaller and cheaper models eliminate most TIB-free tokens
in advance at lower costs. Meanwhile, suspicious locations
identified by these smaller models can be verified further by
GPT-4, reducing the distractions to GPT-4. We also design new
algorithms and adaptive prompts to facilitate TIB detection.

LineBreaker’s Pipeline. We depict LineBreaker’s
pipeline in Figure 5. Initially, a lexical analyzer processes
the code, compiling a comprehensive set of infilling tasks
with code tokens being masked and token type information.
Then lightweight LLMs deployed locally conduct the infill-
ing task, sequentially filtering out most TIB-free tasks and
drastically reducing the search space. It is worth mentioning
that LineBreaker involves several different local mod-
els. Next, following a carefully engineered prompt template,
LineBreaker prompts GPT-4 for further bug inspection.
GPT-4’s responses undergo an automated filtration and are
then aggregated into TIB reports for manual review.

By cascading models in this manner, LineBreaker sig-
nificantly reduces false positives. Early stages remove most
negatives before GPT-4 is invoked, avoiding distractions and
lowering costs (§III-A). Meanwhile, strategic token-generation
control in the local models boosts specificity (§III-B), ensuring
that most true negatives are discarded early. Finally, GPT-4
provides in-depth analysis of suspicious tokens, highlighting
prompt engineering (§III-C). We evaluate the effectiveness of
these new techniques later in §IV-A.

A. Cascaded Detection

The measurements in §II indicate that no single model
can simultaneously deliver high recall, high specificity, and
fast throughput for TIB detection. LineBreaker employs
a cascaded design that combines multiple models to balance
these objectives. We formalize our approach and discuss the
rationale behind model selection.

Problem Formalization. Suppose our pipeline consists of n
stages, each equipped with a different language model. Let
pi denote the true negative rate (i.e., TNR or specificity) of
stage i, qi the true positive rate (i.e., TPR or recall), and
ti the throughput (i.e., execution speed). Let Ni represent
the number of potential TIB cases to be processed at stage

Table 5: TIB detection cost under different parameters.

ϵ0
pi = 0.8 pi = 0.6

n = 2 n = 3 n = 4 n = 5 n = 3 n = 4 n = 5

10−2 365.4 218.6 250.5 316.8 388.5 330.4 351.7
10−3 295.7 76.4 38.6 37.1 247.8 119.3 72.3
10−4 288.7 62.1 17.4 9.1 233.7 98.2 44.4

i, and ϵi represents the ratio (i.e., density) of actual TIB
instances among Ni after stage i, where ϵ0 being the initial
TIB density before detection. We can derive the number of
true/false positives/negatives at each stage:

NTN,i = Nipi(1− ϵi−1) NTP,i = Niqiϵi−1

NFP,i = Ni(1− pi)(1− ϵi−1) NFN,i = Ni(1− qi)ϵi−1

After stage i, TN cases NTN,i are correctly excluded, while
FN cases NFN,i are TIBs missed at this stage. TPs and FPs are
escalated to the next stage, remaining Ni+1 = NTP,i+NFP,i.
Thus, the total number of missed TIBs M across the entire
pipeline and the cumulative execution time T are:

M =

n∑
i=1

Ni(1− qi)ϵi−1 T =

n∑
i=1

Niti

Additionally, the TIB density after stage i can also be
derived:

ϵi =
NTP,i−1

NTP,i−1 +NFP,i − 1
=

qiϵi−1
1− pi − ϵi−1 + (pi + qi)ϵi−1

For an n-stage pipeline, the aggregated precision of all
models before the final stage is then ϵn−1. The final stage
adopts state-of-the-art GPT-4, which processes Nn−1 TIB
candidates, with the specificity pn and recall qn.

We break down the cost into four factors for scalable TIB
detection: 1) the cost of computing resources, Ccomp per
unit time; 2) the cost of API invocations, Capi per call for
commercial LLMs; 3) the penalties associated with missed
bugs, Cmiss, due to potential financial loss; and 4) manual
inspection cost, Ccheck per TIB. We thus define the total cost

C = CapiNn−1 + CcompT + CmissM + CcheckNn

While the values of Capi and Ccomp can be obtained
from service providers, Cmiss and Ccheck are configurable.
This formula transforms the model selection problem into an
optimization problem to minimize the total cost.

LineBreaker’s Pipeline Establishment. First, we fix the
constants in the cost formula. We set Cmiss at $500, which is
preservative according to [25]. Given the example in Figure 1
that inspecting the report is eased by GPT-4, we set Ccheck to
$2. Based on the measurement (§II-C) and online data [35],
we set Capi and Ccomp as $0.025 per API call and $2.49/hour.

Second, we discuss the number of optimal stages under
an experimental configuration. Fixing GPT-4 as the final
stage because its reasoning and natural-language feedback are
instrumental for security experts. We then simulate how many
local lightweight LLMs should precede GPT-4. TIB density ϵ0
varies concerning the dataset (e.g., of different languages), so
we pick representative values according to previous findings,



where the number of bugs per 1,000 lines of code ranges
from 0.1 to 25 [45]. Borrowing average qi = 0.98, selecting
average and best pi as 0.6 and 0.8 from Figure 4, we calculate
the cost of our pipeline in Table 5. We observe that 1)
cascading more does not always derive cost-efficiency because
missing bug penalties accumulate, and the marginal benefit
shrinks; 2) enhancing specificity reduces the cost significantly;
3) positioning the faster model further to the SOTA reduces
computation cost, although local model permutation is irrel-
evant to the overall accuracy. These findings motivate us to
construct better algorithms on token generation with enhanced
specificity, and guide our model selection(see §IV-B).

B. Controlled Token Generation

As measured in §II-D, local LLMs generate tokens in an
unregulated manner, leading to many incorrect infilling results
(e.g., generating a docstring where a variable is expected).

Decoder-only models like Code Llama do not constrain
which type of code token to generate. They blindly select
most probable tokens sequentially until a special end-of-
sequence symbol or length limit is reached. A naive approach
might check if the original token ranks high in probability.
However, once the model deviates from the correct token at
any intermediate step, subsequent tokens are conditioned on
the wrong prefix, rendering the original token improbable.
For example, when a variable name is masked but the model
begins to generate documentation (e.g., starting with """),
subsequent generation follows up this pattern rather than the
expected variable name. Existing frameworks like guidance
can help but fail to constrain the generation of specific models.
Our solution is to inspect the probabilities of generated tokens
and apply syntactic constraints on the output.

The high-level idea is to select tokens that adhere to
the original code tokens in each iteration and inspect the
probabilities to judge consistency. As shown in Figure 5,
the lexical analyzer aids infilling tasks construction with
syntactical knowledge. It inserts special tokens indicating the
infilling position in each function, as shown in Figure 2.
Auxiliary information including the original tokens, token
type (e.g., variable and literal) is also recorded to constrain
the generation in the subsequent steps. Thus, LineBreaker
selects each generated token by verifying whether it remains
syntactically valid and aligns with the original code token.
For example, valid variable names in Python can only contain
letters, underscores, and non-beginning digits.

Algorithm 1 inspects the probabilities of the gener-
ated candidates in each step. For each generated token,
LineBreaker first checks if the token is syntactically valid.
Then, if leftTokens starts with the generated token (i.e., the gen-
eration follows the original code token), it updates leftTokens
and continues the next generation. Otherwise, this generation
is penalized for not being consistent with the code token. In
cases where the probability prob is greater than a threshold
probThresh, meaning there is another, more probable, and
valid token that can deviate from the generation, the check
directly returns False. Nevertheless, when deviation happens

Algorithm 1: Decoder-only Model Consistency Check
Input: maskedCode, originalTokens, probThresh, rankThresh,
Output: consistencyFlag

1 rankSum← 0;
2 generatedTokens, leftTokens← [], originalTokens;
3 while leftTokens.length >0 do
4 nextTokenProbList← top_k(CodeLlamaPredict(maskedCode,

generatedTokens));
5 foreach token, prob in nextTokenProbList do
6 if validateToken(token, typeof(token) then
7 if leftTokens.startswith(token) then
8 leftTokens.remove(token)
9 generatedTokens.append(Token)

10 break to generate the next token;
11 else
12 if prob >probThresh then
13 return False;

14 rankSum← rankSum + 1;

15 else
16 continue to the next iteration;

17 if rankSum >rankThresh then
18 return False;

19 return True;

but prob is less than probThresh, it adds one to rankSum,
penalizing the original code token for not being the most
probable generated token. Finally, consistency is determined
by comparing rankSum with a threshold.

C. Highlighting Inconsistent Positions

As observed in §II-C, GPT-4 can produce many FN
cases, especially with lengthy code snippets that distract
the model with irrelevant context [60]. Thus, we design
a prompt engineering technique emphasizing the suspicious
tokens identified by lightweight LLMs. Based on the most
effective prompt template we measured, LineBreaker in-
structs GPT-4: “Also, pay additional attention to these lines:
{suspicious_lines}” . Rather than the suspicious token,
the whole line is highlighted because of our findings in §II-D,
which indicate that a TIB at one position can increase perplex-
ity for nearby tokens on the same line. Thus, inconsistencies
may also imply TIBs at another position in the same line.

D. Implementation

We implement LineBreaker in Python with roughly 7K
lines of code. It relies on tree-sitter [3] to preprocess the
source code, as it can parse multiple programming languages.
LineBreaker sources models from Hugging Face, and
utilizes the transformer library to generate tokens. Algorithm 1
is based on PyTorch framework. LineBreaker also relies
on OpenAI’s official library to invoke SOTA LLMs deployed
on the cloud. Besides Python integration, we support the C
language with 500 additional lines to demonstrate generality.

IV. EVALUATION

In this section, we first conduct controlled experiments
on our prepared datasets (§II-B). This is to (1) evaluate the
effectiveness of individual components in our design and (2)
compare LineBreaker with existing bug detectors. After



Table 6: Performance of Selected Models with Algorithm 1.

Model
rankT=0 rankT=1 rankT=2

Time
Rec. Spe. Rec. Spe. Rec. Spe.

StarCoder2 3B 96.7 74.6 91.0↓ 82.4↑ 87.1 85.2 727
Code Llama 7B 97.5 65.8 92.2↓ 75.3↓ 89.6 78.5 1601
DeepSeek Coder 6.7B* 97.4 79.7 92.3↓ 86.6↑ 89.3 89.2 1606

* Guidance does not support DeepSeek models, so the metrics are compared with Raw setup.
Others are compared with guidance in Figure 4. rankT referes to rankThreshold.

that, we evaluate LineBreaker on real-world code reposi-
tories and demonstrate its ability to discover new bugs. The
experiment uses the same platform as in §II-D.

A. Controlled Experiments

We continue using dataset D (TIB-free) and D′ (synthe-
sized TIBs), measuring recall and specificity as in §II. The
evaluation also helps us concretize some parameters, which
will be used in a scalable real-world TIB detection in §IV-B.

Controlled Token Generation Algorithm. Next, we evaluate
Algorithm 1 on decoder-only models. We evaluate §II-D again
with different rankThresh (rankT) on decoder-only models,
and present the results of selected models in Table 6. We
set probThresh = 0.9 after observing minor variations in
performance at different probability thresholds. Our algorithm
enables constrained token generation for models not supported
by guidance, such as DeepSeek Coder. While our algorithm
incurs a modest speed penalty, it notably boosts specificity that
offsets minor recall loss, especially when rankthresh ≤ 1. The
recall and specificity of our algorithm are at least comparable
to guidance with selected parameters. Since TIBs are rare in
real-world code, we choose rankThresh = 1, to reduce false
positives and improve overall precision.

Highlighting. To measure the effectiveness of the highlighting
technique (§III-C), we integrate it into the best prompt tem-
plate. The results are listed in Table 2 along with the results in
measurement §II-C. The highlighted lines also include up to
four randomly selected lines in each sample to simulate false
positives propagated from the previous models. Considering
both specificity and recall, highlighting drastically enhances
the performance. This is because GPT-4 refocuses on the sus-
picious line, mitigating the distraction problems. Importantly,
highlighting is only feasible when local models have already
identified specific suspicious tokens.

B. Real-world TIB Detection

To demonstrate its real-world impact, we evaluate
LineBreaker on Python and C repositories on Github,
which are (1) popular (with 1k+ stars), and (2) actively
maintained. The results are summarized in Table 7.
New Bugs. LineBreaker successfully found 123 new TIBs,
we have submitted 69 bug fixes as pull requests, of which 41
have been merged or confirmed by developers.
Precision and Practicality. LineBreaker achieves a bug
detection precision of 23.5%-36.3%, significantly outperform-
ing existing semantic bug detection works [6] on real-world
projects (12.0%). We believe this precision is also practical, es-
pecially for developers who prioritize security, as suggested by

Table 7: Summary of real-world TIB detection results.

Python Repos C Repos
Repositories 80 74
# Submitted PR 55 14
# Merged / Confirmed PR 32 9

# Functionality Bugs 37 7
# Security Bugs 8 3
# Bad Smell 48 20

# Inconsis. Token after Local models 2,679 733
# Reports from GPT-4 1,082 473
# Reports after Filtering 314 77
# Correct Reports (may contain≥ 1 bugs) 74 28
Precision (%) 23.57% 36.36%

the recent study [10]. Moreover, LLM’s detailed and intuitive
explanations make our bug report easy to inspect. Actually,
each report takes only about one minute for our team members
to review. In other words, by inspecting LineBreaker’s
output, one can find one true TIB roughly every four minutes.

Model Selection. As we conduct the evaluation on pop-
ular repositories, we assume ϵ0 ranges around 10−3 [45].
Thus, our pipeline consists of three local models plus GPT-
4o according to §III-A. Such a configuration misses fewer
TIBs with additional but acceptable human inspection cost
and slight accuracy reduction. The optimal selection of three
local models is Qwen2.5 Coder 1.5B, CodeGemma 7B, and
Qwen2.5 14B. However, as fewer models were available when
we conducted this evaluation, we utilized StableCode and
CodeLlama models. GPT-4o was used as the state-of-the-
art LLM to inspect the filtered results. We use the prompt
template shown in Figure 3 plus suspicious lines highlighting.
New models such as Llama 3 have been recently released.
However, their APIs previously offered limited support for
JSON output, which makes it difficult to integrate into an
automated detection pipeline. We leave the measurement and
integration of these models as future work.

We thus estimate LineBreaker’s end-to-end performance
using the formulas in §III-A, deriving a theoretical accuracy
of 10.5%. Such value is comparable to our evaluations in
§IV-B. Notably, relying solely on GPT-4 as a TIB detector
yielded a precision of only 0.7%. In contrast, LineBreaker
effectively amplifies the density of TIB by 105 times, making
scalable TIB detection and manual inspection practical.

Detecting TIBs in Real-world Repositories. LineBreaker
processed 80 popular Python repositories from GitHub. Ini-
tially, 80K infilling tasks are derived from static analysis. After
dropping the consistent ones and tasks associated with very
long code snippets (e.g., configuration and data files), 2,679
inconsistencies are left after local model filtering. Escalating
these functions containing inconsistencies to GPT-4 for TIB
detection, 1,082 reports remained, of which 314 persisted after
filtering based on the properties mentioned in §II-C. Three
security experts spent 12 man-hours totally inspecting these
reports, confirming that 74 reports are true positives. This
resulted in a precision of 23.57% on Python repositories. The
detection requires less than 20 machine hours in total and less
than $40 to query GPT-4o APIs. With a server cost of $52,



the total cost to find these TIBs is less than $100.
We also experimentally test LineBreaker on C code to

demonstrate its generality. It generates infilling tasks according
to abstract syntax tree AST similarity strategies [11], [29]
following a previous research [6]. We observe an enhanced
accuracy of LineBreaker on C repositories, 36.36%. A
potential reason is that Code Llama performs significantly
better on C, filtering out 97.1% consistent tokens. A potential
explanation is that C language induces fewer defects than
Python [54], making masked tokens more predictable. Besides,
we prototype support for the Rust programming language
and experimentally discover one TIB in a repository. These
evaluations showcase the generality of LineBreaker across
various languages, backing its scalable deployment.

Repository Exclusion. We intentionally exclude 10 reposito-
ries from our dataset due to their negative impact on LLM’s
performance: (a) Projects written in outdated languages (e.g.,
Python 2), which could confuse LLMs as they are trained on
a more recent code corpus; (b) AI-related projects (e.g., chat-
langchain [2]). We observed downgraded LLM performance
for them, likely because their fast-evolving AI techniques sur-
pass LLMs’ training corpus; (c) Security-related or low-level
system projects (e.g., hosts [59]), whose special or unusual
functionalities often lead to reduced specificity. For example,
exploit generators intentionally include insecure code, render-
ing respective infilling tasks regarded as inconsistent by local
models, or reported as vulnerable by GPT-4. We believe such
repositories could be better handled with fine-grained prompt
engineering, which we leave as future work.

C. Study of the Discovered TIBs

LineBreaker successfully identifies multiple real-world
TIBs in impactful software projects, some of which lead
to severe security consequences like memory corruption and
denial-of-service attacks. Notably, a director of wolfSSL [69]
- a popular and security-critical library - scheduled a meeting
with us to discuss our found vulnerabilities and fixes. We
showcase some TIBs we found in this section.
switch (optionId) { ...
case InterpreterThreadFrameStackSize:
return s_threadFrameStackSize;

case InterpreterThreadExceptionFlowSize:
return s_threadFrameStackSize s_threadExceptionFlowSize ;}

Case 1. The second switch-case in the above code
snippet wrongly returns the same variable as the
first one, where the correct identifier should be
s_threadExceptionFlowSize. Since the returned
size here will be used for buffer initialization, buffer overflow
can happen later, causing severe security consequences such
as privilege escalation. We suspect the developer forgot to
change the variable name when copying and pasting the
return statement.
Case 2. Listing 1 shows a TIB in the security-critical WolfSSL
library. The sizeof() function is redundantly applied to
xSize, which is already a size-representing variable. This
leads to an unexpectedly smaller buffer size, likely causing

Table 8: Line-level metrics comparison with FLAG on the testset.

Precision Recall TPL FPL TNL FNL Cost
FLAG 0.9% 32.0% 32 3732 5396 68 37.4$
LineBreaker 14.3% 69.0% 69 413 8715 31 5.1$

overflows with severe security consequences. We suspect this
is caused by variable naming confusion.
if has_aux:

example, *aux = example
else:

aux = tuple()
rand_state = random.Random( aux[-1] aux[-1] if aux else 0 )

Case 3. aux could be an empty tuple in the above Python
code snippet, where accessing its last element with aux[-1]
will cause an index out of range exception, leading to DoS.

D. Comparison with Previous Work

TIB covers semantic bugs like variable misuse, which
are also targeted by some existing works. However, direct
comparisons with them are often difficult due to reasons like
artifact unavailability [64], high training costs [9], and different
targeted languages [8], [21], [53]. Therefore, we compare
with some representative works with thorough design-level
analysis, with auxiliary experiments when applicable.
Pre-LLM Approaches. Before LLMs’ flourish, machine
learning based approaches relied on limited and dedicated
datasets for model training, affecting flexibility and generality.
DeepBugs [53] targets only three specific types of name-based
bugs with known patterns, limiting its generality. FICS [6]
recognizes outlier functions as potential bugs, with AST-based
embeddings. However, semantic information (e.g., variable
names) is not included in such embeddings, rendering it
ineffective in TIB detection. Furthermore, FICs assumes the
existence of a “correct” function in the codebase to spot
the similar but buggy one, which may not hold especially
in smaller codebases. Unlike these systems, LineBreaker
requires no training, fine-tuning, or strong assumptions on bug
patterns, codebase, or programming languages.
LLM-Based Approaches. FLAG [5] utilizes LLM for seman-
tic bug detection at the line level and is the closest related
work. It compares the original code against the code generated
by LLM line by line, given other lines as the prompt in
each line’s iteration. To ensure a fair comparison, considering
FLAG’s high economic costs and line-by-line detection, we
evaluated FLAG on 200 evenly sampled functions from D and
D′ and present the line-level metrics in Table 8. Among these,
100 samples/lines contain TIB (i.e., 100 positive line-level
cases), while the remaining lines constitute negative instances.
The results show LineBreaker significantly outperforms
FLAG in all essential metrics: precision (0.9% → 14.3%),
recall (32% → 69%), and monetary cost on LLM APIs.

As seen, FLAG has many false alarms and misses the
majority of TIBs, yet with high API cost (∼$0.19 per function).
We avoid timing the executions because both designs permit
extensive concurrency optimization as computation power and
API rate limit allow. LineBreaker’s superior performance
roots in its effective pipeline design. It combines efficient



yet capable local LLMs with the SOTA LLM, boosting the
performance while maintaining a lower cost. Additionally,
FLAG’s cost increases quadratically with the number of lines.
Although LineBreaker induces expense on GPU hours
because of running models locally, its API cost is then linear
in the number of lines when using the SOTA LLM.

V. RELATED WORK

Semantic Bug Detection. Semantic bug detection is an active
research area. Besides comparative work introduced in §IV-D,
various methodologies address bugs exhibiting well-defined
and ambiguous patterns. Li et al. pioneered the application of
LLMs to target Use Before Initialization bugs, demonstrating
LLMs’ potential to enhance conventional static analysis tech-
niques [38]. Further advancements by researchers like Sun et
al. and Wei et al. have expanded LLM applications to address
a wider range of logic bugs, including API misuse [60],
[61], [66], [72], [41], [74]. Traditional methods such as static
analysis and formal verification also play significant roles in
identifying and resolving semantic bugs with fixed patterns
[42], [27], [23], [39], [47]. Recently, Natural Language Pro-
cessing (NLP) has been leveraged to analyze documentation
and pinpoint potential semantic inconsistencies or discrepan-
cies between implementation and documentation [14], [49],
[15], [13], [12]. However, these NLP-based approaches heavily
rely on the quality of the documentation, facing substantial
challenges with ambiguous or outdated materials prevalent in
open-source environments.

LLM for Software Engineering. Recent advancements have
made LLMs for coding tasks widely accessible through
public API or open-source sharing of code and models.
LLMs have demonstrated significant contributions to areas
like fuzzing [37], [46], [70], code repair [71], [31], [22],
[52], [30], test generation [73], [16], code-comment consis-
tency checking [75], etc. Despite these developments, applying
LLMs in scalable bug detection, specifically TIB, remains
underexplored and largely experimental.

VI. DISCUSSION AND CONCLUSION

Limitations. Decoder-only models like Code Llama are cur-
rently limited to infilling at a single position each time.
Although LineBreaker independently verifies the consis-
tency of each code token, it may not detect sophisticated
bugs associated with multiple discrete positions. Additionally,
LLMs sometimes fall short when dealing with corner cases,
especially when the correct code appears counterintuitive. This
snippet demonstrates an FP case involving the transmission of
a firmware header.
if (!securedSend(0x00, 128, (const uint8_t

*)fwData->getBytesNoCopy())) ...↪→

if (!securedSend(0x03, 256, (const uint8_t

*)fwData->getBytesNoCopy() + 128)) ...↪→

if (!securedSend(0x02, 256, (const uint8_t

*)fwData->getBytesNoCopy() + ( 388 ))) ...↪→

In the third if statement, GPT-4 believes the correct offset is
384 (128+256) instead of 388. It assumes that since 384 bytes

of data have already been sent, 384 should be the offset for
the next chunk. Relevant documentation is missing from the
code repository. Since software development heavily relies on
external libraries and standard specifications, LLMs can make
mistakes when related information is missing from the context
(e.g., proprietary code). This drawback might be mitigated by
compensating for richer context [7]. For example, RAG [36],
[43] can intelligently fetch external knowledge.

GPU Memory Constraint. Our measurement experiments on
local large code models (§II-D) revealed that inference tasks
may fail with extended context. The direct solution is running
LineBreaker on a system with connected GPUs that offer
a larger GPU memory pool. However, some optimizations can
reduce the memory consumption. For example, FlashAtten-
tion [20] reduces the space complexity linear in the context
length, but requires hardware support. Quantization [40] com-
presses the model weights by reducing parameters’ numerical
precision, also leading to less memory usage.

Future Work. LineBreaker heavily relies on existing
infilling models to mark suspicious TIBs. It may be beneficial
to fine-tune or train a large model with improved specificity
and recall. The fine-tuned model demonstrates better capability
for auditing smart contracts [44]. Although simple, replaced
tokens detection [17] fits our scenario with a new model
trained. Researchers currently consider this task as a form of
pretraining, which enhances the model’s capability to compre-
hend semantics more effectively.

Another potential engineering direction is in the context,
which serves as a foundation for inference. Our measurement
study explored contexts at coarse-grained levels, such as files
and functions (§II-D). Although out of LineBreaker’s
scope, its design excludes bugs spanning multiple positions in
the program. Fine-grained context engineering may leverage
code slicing [50], [26], where relevant functions from different
files can be curated, and irrelevant secure code lines can be
removed. Thus, more complex bug patterns involving tokens
scattered at different places might be captured.

VII. CONCLUSION

We systematically measured LLMs’ capabilities to detect
TIBs and identified their strengths and weaknesses. Based on
the measurement, we design LineBreaker, a TIB detector
using LLMs. It discovered 123 unknown bugs, demonstrating
its effectiveness, scalability, and generality.

VIII. ACKNOWLEDGEMENT

We sincerely thank Yuhui Hong, the anonymous reviewers,
and the shepherd for their valuable insights. This work was
supported in part by the National Science Foundation under
Grant No. 2154199, and Lilly Endowment, Inc., through its
support for the Indiana University Pervasive Technology Insti-
tute. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the funding agencies.



REFERENCES

[1] GitHub - guidance-ai/guidance: A guidance language for controlling
large language models. — github.com. https://github.com/guidanc
e-ai/guidance. [Accessed 08-01-2025].

[2] langchain-ai/chat-langchain. https://github.com/langchain-ai/chat-langc
hain, 2024. Accessed: 2024-04-29.

[3] tree-sitter/tree-sitter: An incremental parsing system for programming
tools. https://github.com/tree-sitter/tree-sitter, 2024. Accessed: 2024-
04-29.

[4] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[5] Baleegh Ahmad, Benjamin Tan, Ramesh Karri, and Hammond Pearce.
Flag: Finding line anomalies (in code) with generative ai. arXiv preprint
arXiv:2306.12643, 2023.

[6] Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan Williams, and Long
Lu. Finding bugs using your own code: detecting functionally-similar
yet inconsistent code. In 30th USENIX security symposium (USENIX
Security 21), pages 2025–2040, 2021.

[7] Toufique Ahmed, Christian Bird, Premkumar Devanbu, and Saikat
Chakraborty. Studying llm performance on closed-and open-source data.
arXiv preprint arXiv:2402.15100, 2024.

[8] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
Learning to represent programs with graphs. In International Conference
on Learning Representations, 2018.

[9] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-
supervised bug detection and repair. Advances in Neural Information
Processing Systems, 34:27865–27876, 2021.

[10] Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni.
" false negative-that one is going to kill you."-understanding industry
perspectives of static analysis based security testing. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 19–19. IEEE Computer
Society, 2023.

[11] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,
and Lorraine Bier. Clone detection using abstract syntax trees. In
Proceedings. International Conference on Software Maintenance (Cat.
No. 98CB36272), pages 368–377. IEEE, 1998.

[12] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang,
Xiaozhong Liu, Haixu Tang, and Baoxu Liu. Sherlock on specs:
Building {LTE} conformance tests through automated reasoning. In
32nd USENIX Security Symposium (USENIX Security 23), pages 3529–
3545, 2023.

[13] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang,
Xiaozhong Liu, Haixu Tang, and Dongfang Zhao. Seeing the forest
for the trees: Understanding security hazards in the {3GPP} ecosystem
through intelligent analysis on change requests. In 31st USENIX Security
Symposium (USENIX Security 22), pages 17–34, 2022.

[14] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai
Chen, and Wei Zou. Devils in the guidance: predicting logic vulnerabil-
ities in payment syndication services through automated documentation
analysis. In 28th USENIX Security Symposium (USENIX Security 19),
pages 747–764, 2019.

[15] Yi Chen, Yepeng Yao, XiaoFeng Wang, Dandan Xu, Chang Yue,
Xiaozhong Liu, Kai Chen, Haixu Tang, and Baoxu Liu. Bookworm
game: Automatic discovery of lte vulnerabilities through documentation
analysis. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1197–1214. IEEE, 2021.

[16] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and
Jianwei Yin. Chatunitest: A framework for llm-based test generation.
In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, pages 572–576, 2024.

[17] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Man-
ning. Electra: Pre-training text encoders as discriminators rather than
generators. In International Conference on Learning Representations.

[18] CloCkWeRX. Pull request for bug fix in rabbitvcs. https://github.com/r
abbitvcs/rabbitvcs/pull/385/files#diff-eca3c60057143346eea4a850ba4fb
60752c8cb397ec380293af7e252c1677d0f, 2024.

[19] Roi Cohen, May Hamri, Mor Geva, and Amir Globerson. Lm vs
lm: Detecting factual errors via cross examination. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 12621–12640, 2023.

[20] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. Flashattention: Fast and memory-efficient exact attention with
io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

[21] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song,
and Ke Wang. Hoppity: Learning graph transformations to detect
and fix bugs in programs. In International conference on learning
representations (ICLR), 2020.

[22] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and
Shin Hwei Tan. Automated repair of programs from large language
models. 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 1469–1481, 2022.

[23] Ansgar Fehnker and Ralf Huuck. Model checking driven static analysis
for the real world: designing and tuning large scale bug detection.
Innovations in systems and software engineering, 9(1):45–56, 2013.

[24] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al.
Codebert: A pre-trained model for programming and natural languages.
In Findings of the Association for Computational Linguistics: EMNLP
2020, pages 1536–1547, 2020.

[25] Matthew Finifter, Devdatta Akhawe, and David Wagner. An empirical
study of vulnerability rewards programs. In 22nd USENIX Security
Symposium (USENIX Security 13), pages 273–288, 2013.

[26] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating
faulty code using failure-inducing chops. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’05, page 263–272, New York, NY, USA, 2005. Association
for Computing Machinery.

[27] Jian Huang, Michael Allen-Bond, and Xuechen Zhang. Pallas: Semantic-
aware checking for finding deep bugs in fast path. In Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 709–722,
2017.

[28] Sungjae Hwang and Sukyoung Ryu. Gap between theory and practice:
An empirical study of security patches in solidity. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
pages 542–553, 2020.

[29] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu. Deckard: Scalable and accurate tree-based detection of code
clones. In 29th International Conference on Software Engineering
(ICSE’07), pages 96–105. IEEE, 2007.

[30] Ma Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel
Sundaresan, and Alexey Svyatkovskiy. Inferfix: End-to-end program
repair with llms. Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023.

[31] Harshit Joshi, José Pablo Cambronero, Sumit Gulwani, Vu Le, Ivan
Radicek, and Gust Verbruggen. Repair is nearly generation: Multilingual
program repair with llms. In AAAI Conference on Artificial Intelligence,
2022.

[32] Shubhra Kanti Karmaker Santu and Dongji Feng. TELeR: A general
taxonomy of LLM prompts for benchmarking complex tasks. In
Findings of the Association for Computational Linguistics: EMNLP
2023, pages 14197–14203. Association for Computational Linguistics,
December 2023.

[33] Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay
Hegde. On the computational complexity of self-attention. In Inter-
national conference on algorithmic learning theory, pages 597–619.
PMLR, 2023.

[34] Fatemeh Khoshnoud, Ali Rezaei Nasab, Zahra Toudeji, and Ashkan
Sami. Which bugs are missed in code reviews: An empirical study on
smartshark dataset. In Proceedings of the 19th International Conference
on Mining Software Repositories, pages 137–141, 2022.

[35] Lambda Inc. Gpu cloud - vms for deep learning | lambda, 2024.
Accessed: 2024-09-04.

[36] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems,
33:9459–9474, 2020.

[37] Guochang Li, Chen Zhi, Jialiang Chen, Junxiao Han, and Shuiguang
Deng. Exploring parameter-efficient fine-tuning of large language model
on automated program repair. In Proceedings of the 39th IEEE/ACM

https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://github.com/langchain-ai/chat-langchain
https://github.com/langchain-ai/chat-langchain
https://github.com/tree-sitter/tree-sitter
https://github.com/rabbitvcs/rabbitvcs/pull/385/files#diff-eca3c60057143346eea4a850ba4fb60752c8cb397ec380293af7e252c1677d0f
https://github.com/rabbitvcs/rabbitvcs/pull/385/files#diff-eca3c60057143346eea4a850ba4fb60752c8cb397ec380293af7e252c1677d0f
https://github.com/rabbitvcs/rabbitvcs/pull/385/files#diff-eca3c60057143346eea4a850ba4fb60752c8cb397ec380293af7e252c1677d0f


International Conference on Automated Software Engineering, pages
719–731, 2024.

[38] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing
static analysis for practical bug detection: An llm-integrated approach.
Proceedings of the ACM on Programming Languages (PACMPL), Issue
OOPSLA, 2024.

[39] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John CS Lui.
Mirchecker: detecting bugs in rust programs via static analysis. In
Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security, pages 2183–2196, 2021.

[40] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-
Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song
Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of machine learning and
systems, 6:87–100, 2024.

[41] Jinghua Liu, Yi Yang, Kai Chen, and Miaoqian Lin. Generating api
parameter security rules with llm for api misuse detection. Proceedings
2025 Network and Distributed System Security Symposium, 2025.

[42] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé.
Avatar: Fixing semantic bugs with fix patterns of static analysis viola-
tions. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 1–12. IEEE, 2019.

[43] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and
Alexey Svyatkovskiy. ReACC: A retrieval-augmented code completion
framework. In Smaranda Muresan, Preslav Nakov, and Aline Villavi-
cencio, editors, Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pages
6227–6240, Dublin, Ireland, May 2022. Association for Computational
Linguistics.

[44] Wei Ma, Daoyuan Wu, Yuqiang Sun, Tianwen Wang, Shangqing Liu,
Jian Zhang, Yue Xue, and Yang Liu. Combining fine-tuning and llm-
based agents for intuitive smart contract auditing with justifications. In
2025 IEEE/ACM 47th International Conference on Software Engineer-
ing (ICSE), pages 330–342. IEEE Computer Society, 2024.

[45] Steve McConnell. Code complete. Pearson Education, 2004.
[46] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury.

Large language model guided protocol fuzzing. Proceedings 2024
Network and Distributed System Security Symposium, 2024.

[47] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. Semfix: Program repair via semantic analysis. In 2013
35th International Conference on Software Engineering (ICSE), pages
772–781. IEEE, 2013.

[48] OpenAI. Prompt engineering - OpenAI API. https://platform.openai.co
m/docs/guides/prompt-engineering, 2024.

[49] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Raymond J
Mooney. Deep just-in-time inconsistency detection between comments
and source code. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 427–435, 2021.

[50] Aurora Papotti, Fabio Massacci, and Katja Tuma. On the effects
of program slicing for vulnerability detection during code inspection:
Extended abstract. ICSE-Companion ’24, page 368–369, New York,
NY, USA, 2024. Association for Computing Machinery.

[51] Jibesh Patra and Michael Pradel. Semantic bug seeding: a learning-
based approach for creating realistic bugs. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 906–918,
2021.

[52] Hammond A. Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri,
and Brendan Dolan-Gavitt. Examining zero-shot vulnerability repair
with large language models. 2023 IEEE Symposium on Security and
Privacy (SP), pages 2339–2356, 2021.

[53] Michael Pradel and Koushik Sen. Deepbugs: A learning approach to
name-based bug detection. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):1–25, 2018.

[54] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar De-
vanbu. A large scale study of programming languages and code quality
in github. In Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering, pages 155–165,
2014.

[55] Cedric Richter and Heike Wehrheim. Learning realistic mutations: Bug
creation for neural bug detectors. In 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST), pages 162–173. IEEE, 2022.

[56] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan,
Ed H Chi, Nathanael Schärli, and Denny Zhou. Large language

models can be easily distracted by irrelevant context. In International
Conference on Machine Learning, pages 31210–31227. PMLR, 2023.

[57] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mp-
net: Masked and permuted pre-training for language understanding.
Advances in neural information processing systems, 33:16857–16867,
2020.

[58] Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy,
Mirza Sanjida Alam, Earl T Barr, and Wei Le. A comprehensive study
of the capabilities of large language models for vulnerability detection.
arXiv preprint arXiv:2403.17218, 2024.

[59] StevenBlack. Stevenblack/hosts: Consolidating and extending hosts files
from several well-curated sources. optionally pick extensions for porn,
social media, and other categories. https://github.com/StevenBlack/hos
ts, 2024. Accessed: 2024-04-29.

[60] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Wei Ma, Lyuye Zhang,
Miaolei Shi, and Yang Liu. Llm4vuln: A unified evaluation framework
for decoupling and enhancing llms’ vulnerability reasoning. CoRR,
2024.

[61] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi
Xu, Xiaofei Xie, and Yang Liu. Gptscan: Detecting logic vulnerabilities
in smart contracts by combining gpt with program analysis. In Pro-
ceedings of the IEEE/ACM 46th International Conference on Software
Engineering, pages 1–13, 2024.

[62] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou,
and Chengxiang Zhai. Bug characteristics in open source software.
Empirical software engineering, 19:1665–1705, 2014.

[63] Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting
llm-generated text. Communications of the ACM, 67(4):50–59, 2024.

[64] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and
Rishabh singh. Neural program repair by jointly learning to localize
and repair. In International Conference on Learning Representations,
2019.

[65] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,
Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in neural infor-
mation processing systems, 35:24824–24837, 2022.

[66] Moshi Wei, Nima Shiri Harzevili, YueKai Huang, Jinqiu Yang, Junjie
Wang, and Song Wang. Demystifying and detecting misuses of deep
learning apis. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1–12, 2024.

[67] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea,
Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C.
Schmidt. A prompt pattern catalog to enhance prompt engineering with
chatgpt. ArXiv, abs/2302.11382, 2023.

[68] Brandon T. Willard and Rémi Louf. Efficient guided generation for large
language models, 2023.

[69] wolfSSL Inc. wolfssl, 2024. Accessed: 2024-04-29.
[70] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel,

and Lingming Zhang. Fuzz4all: Universal fuzzing with large language
models. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, pages 1–13, 2024.

[71] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated
program repair in the era of large pre-trained language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pages 1482–1494. IEEE, 2023.

[72] Yifan Xia, Zichen Xie, Peiyu Liu, Kangjie Lu, Yan Liu, Wenhai Wang,
and Shouling Ji. Exploring automatic cryptographic api misuse detection
in the era of llms. arXiv preprint arXiv:2407.16576, 2024.

[73] Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao
Zhu, Xiao Chu, Jianyi Zhou, Guangtai Liang, Qianxiang Wang, et al.
On the evaluation of large language models in unit test generation.
In Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, pages 1607–1619, 2024.

[74] Yi Yang, Jinghua Liu, Kai Chen, and Miaoqian Lin. The midas
touch: Triggering the capability of llms for rm-api misuse detection.
Proceedings 2025 Network and Distributed System Security Symposium,
2025.

[75] Yichi Zhang, Zixi Liu, Yang Feng, and Baowen Xu. Leveraging large
language model to assist detecting rust code comment inconsistency.
In Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, pages 356–366, 2024.

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://github.com/StevenBlack/hosts
https://github.com/StevenBlack/hosts

	Introduction
	Measurement Study
	Language-Model based TIB Detection
	Dataset Preparation
	GPT-4's Performance on TIB Detection
	Code-Specific Models on TIB Detection

	Design and Implementation of LineBreaker
	Cascaded Detection
	Controlled Token Generation
	Highlighting Inconsistent Positions
	Implementation

	Evaluation
	Controlled Experiments
	Real-world TIB Detection
	Study of the Discovered TIBs
	Comparison with Previous Work

	Related Work
	Discussion and Conclusion
	Conclusion
	Acknowledgement
	References

