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ABSTRACT
An IoT device today can be managed through different channels,
e.g., by its device manufacturer’s app, or third-party channels such
as Apple’s Home app, or a smart speaker. Supporting each channel
is a management framework integrated in the device and provided
by different parties. For example, a device that integrates Apple
HomeKit framework can be managed by Apple Home app. We call
the management framework of this kind, including all its device-
and cloud-side components, a device management channel (DMC). 4
third-party DMCs are widely integrated in today’s IoT devices along
with the device manufacturer’s own DMC: HomeKit, Zigbee/Z-
Wave compatible DMC, and smart-speaker Seamless DMC. Each
of these DMCs is a standalone system that has full mandate on
the device; however, if their security policies and control are not
aligned, consequences can be serious, allowing a malicious user
to utilize one DMC to bypass the security control imposed by the
device owner on another DMC. We call such a problem Chaotic
Device Management (Codema).

This paper presents the first systematic study on Codema, based
on a new model-guided approach. We purchased and analyzed 14
top-rated IoT devices and their integration and management of mul-
tiple DMCs. We found that Codema is both general and fundamental:
these DMCs are generally not designed to coordinate with each
other for security policies and control. The Codema problems enable
the adversary to practically gain unauthorized access to sensitive
devices (e.g., locks, garage doors, etc.). We reported our findings
to affected parties (e.g., Apple, August, Philips Hue, ismartgate,
Abode), which all acknowledged their importance. To mitigate this
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new threat, we designed and implemented CGuard, a new access
control framework that device manufacturers can easily integrate
into their IoT devices to protect end users. Our evaluation shows
that CGuard is highly usable and acceptable to users, easy to adopt
by manufacturers, and efficient and effective in security control.
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1 INTRODUCTION
Today’s Internet of Things (IoT) are managed by different frame-
works that allow users to utilize mobile apps to configure and
control devices through local connections (e.g., Bluetooth) or cloud
services. Some of these frameworks are provided by device manu-
facturers: e.g., a house owner can use the August app to lock/unlock
her door [12], the Philips Hue app to turn on/off her light bulbs [30],
and the ismartgate app to open/close her garage door [23].

In the meantime, the increasing diversity of IoT also gives rise
to third-party solutions, which handle different devices regardless
of their manufacturers. Prominent examples include Apple’s Home-
Kit [11], Zigbee [39] and Z-Wave [37] compatible frameworks. In
our research, we call such a framework, including all its device-
and cloud-side components, a device management channel (DMC),
or simply a channel. Today’s IoT devices tend to support multiple
DMCs, both the ones frommanufacturers and those offered by third
parties. For example, the August smart lock can be controlled by
HomeKit, SmartThings hub (a Z-Wave compatible DMC), as well as
August’s own app. Each channel is a standalone system and their
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integration on a device, if not done right, can have serious security
implications, exposing the device to unauthorized access. With its
importance, this problem, however, has never been studied before.
Risks of disjointed DMCs. Indeed our research shows that to-
day’s DMC integration is fundamentally flawed, leaving different
channels on the same device completely disjointed or inadequately
coordinated in their security controls. More specifically, with the
heterogeneous architectures of different DMCs, whose security
policies and enforcement components scattered across device and
cloud ends, they all have a full mandate on the device, capable of in-
dependently determining whether a specific functionality (e.g., door
opening) should be granted. However, such access decisions are of-
ten uncoordinated, with one channel operating in a way completely
oblivious to other channels. As a result, any security policies con-
figured and enforced through one channel could be circumvented
through another channel. We call this risk chaotic device manage-
ment or Codema.
Exploiting Codema: analysis and discoveries. To understand
the real-world impacts of Codema, we focus on four major third-
party DMCs (Apple HomeKit, Zigbee or Z-Wave compatible channel
and BLE-based smart speaker channels) and their integration into
IoT devices besides device manufacturer DMCs (Section 3). Using a
model-guided approach , we systematically analyzed the security
management and policy coordination among different DMCs in a
set of highly popular devices, which shows that all these channels
integrated in popular devices contain Codema vulnerabilities and
can be easily exploited.

Particularly, third-party channels are typically disjointed from
manufacturer channels and between themselves. So for a device
ownerwho solely relies on her favorite channel, such asHomeKit, to
manage her device, other channels supported on the device become
unprotected and thus exposed to the malicious actor, a risk unaware
to the device owner. For example, an Airbnb homeowner could
manage her ismartgate garage controller through Apple HomeKit,
which however leaves the manufacturer DMC “dangling”: whoever
only temporarily given the access to her homeWi-Fi (e.g., her Airbnb
guest) becomes able to stealthily configure this channel to gain a
permanent remote control on the garage door (Section 3.1).

Further, although some manufacturer DMCs include the mecha-
nisms to control third-party DMCs by managing their individual
policies and internal states (e.g., allowing the user using the manu-
facturer app to open/close a third-party channel such as HomeKit
or control its network provision), we found that such mechanisms
are all flawed in the absence of a proper cross-DMC management
protocol enabling policy interoperability. This problem turns out to
be fundamental to the design of IoT access control, as discovered in
our study. For example, although the Abode smart hub is designed
to manage access to its HomeKit channel through the manufac-
turer channel (by generating HomeKit setup code), any user with
temporary access to the hub (e.g., an Airbnb guest) can acquire the
setup code to stealthily take over the HomeKit channel, even after
the temporary right has been revoked through the manufacturer
channel. This allows the user to later disarm the home security
system of the hub (Section 3.2).

Since the Codema risk is related to human behaviors (e.g., whether
the owner of an IoT device leaves certain DMCs unused/open,

whether she tends to temporarily grant the access to the device to
the party not fully trusted), we performed a user study to answer
such questions and better understand the attack feasibility. We
further performed a survey to understand whether the users have
been informed of the risks by device vendors in user manuals. Our
results indicate that Codema attacks are highly practical against
real-world users (Section 4).

Further, we discovered that the Codema risk is pervasive. We
looked into 14 high-profile devices, which all turn out to be vulnera-
ble. Examples include the Philips Hue bulb (dubbed “the Best Seller
of Smart Bulb in Amazon” [31]) and the August Lock (“the most
Advanced Smart Lock in Amazon” [26] ). Note that these confirmed
or potentially vulnerable devices cover almost all types of IoT de-
vices, including bridges, cameras, garage door controllers, lights,
locks, outlets, security systems (Section 3.3). Once such security-,
privacy- or safety-sensitive devices are stealthily controlled by an
unauthorized party, the consequences can be dire.

These findings provide strong evidence that the access control on
today’s IoT systems in the presence of multiple DMCs has not been
well thought-out. We reported the results of our study to the man-
ufacturers of all the devices we analyzed. They all acknowledged
that our findings are real and significant. We have been formally
recognized by HomeKit, Philips, August, ismartgate, and Abode,
and are helping them fix these problems. Video demos of our attacks
and parts of manufacturer responses are posted online [49].
Mitigating Codema. Given the significant impact of Codema, find-
ing effective protections that can work with today’s IoT systems is
imperative. For this purpose, we introduce Channel Guard (CGuard),
a new, light-weight access control framework for cross-DMC se-
curity management. The core idea is to have a centralized access
control framework in the device to oversee and govern the acces-
sibility of all DMCs on a device. Device manufacturers can easily
integrate CGuard into their firmware to help ensure that no DMC
is left in an unexpected accessibility status, such as dangling or
being enabled/accessed stealthily by the attacker.

We implemented CGuard and deployed it on a proof-of-concept
smart LED light we built on Raspberry Pi 3b, which supports multi-
ple DMCs. Our evaluation shows that the prototype eliminates the
Codema risk, and works properly with mainstreamDMCs including
Apple HomeKit and Amazon Alexa. To evaluate the usability and
practicality of CGuard, we conducted another user study, which
shows our approach is highly acceptable by users to enhance the
security and privacy of smart homes. We make all the code publicly
available on Github [15] and further discuss a clean-slate design of
multiple-DMC IoT to fully solve Codema, through joint-effort across
multiple DMC providers and device manufacturers (Section 6).
Contribution. The contributions are outlined as follows:
• New understanding. Our research reveals a new category of un-
expected and security-critical weaknesses in today’s IoT designs,
which integrate multiple disjointed DMCs on the same device with-
out proper coordination in place to manage their policy configura-
tion and enforcement. We demonstrate that such weaknesses could
expose many IoT devices today to realistic security risks with seri-
ous consequences. Our study brings attention to this new problem,
sheds light on its fundamental causes and offers insights that can
lead to its solution.



• New technical solutions. Based upon the understanding, we de-
signed a new access-control framework to mitigate the Codema
risks. Our approach can be easily adopted by a device manufacturer,
without changing third-party DMC designs and thus working well
with existing systems such as HomeKit. We implemented our de-
sign and demonstrated its efficacy and usability and open-sourced
our prototype. This new technique will enhance the security quality
of IoT devices, not only those already on the market but also those
to be built in the years to come.

2 DEVICE MANAGEMENT CHANNELS
On an IoT device, the user console, the IoT cloud, hub, and the on-
device software stack together form the DMC to allow the user to
manage the device. In this section, we explain the operations of the
popular DMCs integrated into mainstream IoT devices and security
policies they support (Section 2.1 and 2.2). Then we summarize
an abstracted state-machine model to generally describe a DMC’s
operations in IoT devices (Section 2.3).

2.1 Manufacture DMCs
Eachmanufacturer provides its ownDMC(s), which we callm-DMC,
to control its products. m-DMC typically has one of the following
architectures:
• Cloud-based architecture. Many device manufacturers run a back-
end cloud service to support their mobile apps and enable remote
control. In this architecture (see Figure 1), one can issue commands
through the manufacturer app, which forwards the commands
to the cloud; after proper authentication and authorization, the
commands are delivered to the devices connected to the cloud
through the Internet. The cloud maintains a set of security policies
about users’ access rights on devices, which are used to mediate
the delivery of commands to the devices.
• Local-control architecture. Another common DMC is for local
control (also see Figure 1): the device can be paired with the manu-
facturer app through BLE or home Wi-Fi, to establish a connection
for receiving commands from the user.
• Hub-based DMC. Another common architecture is the hub-based
m-DMC: the device is directly connected to a hub through local
communication protocols (e.g., BLE, Z-Wave, Zigbee, etc.); the hub
connects to the manufacturer cloud through the Internet and relays
the messages between the device and the cloud.

2.2 Third-party DMCs
HomeKit DMC. HomeKit is Apple’s framework for configuring
and controlling smart-home devices, which has been widely sup-
ported by mainstream IoT manufacturers. Through Homekit, users
can manage their IoT appliances using Apple’s uniform manage-
ment console [10], i.e., the Home app on iOS, iPadOS, etc.

To support HomeKit, the device manufacturer needs to integrate
into its IoT device the HomeKit Accessory Protocol (HAP) li-
brary [25] (see Figure 1). HomeKit supports Wi-Fi and Bluetooth
as the communication channel. The HAP library processes device
operation commands received by the Wi-Fi or Bluetooth interfaces,
and passes them up to the manufacturer’s control program on the
Application Logic Layer (ALL) (see Figure 1). The ALL program

then calls device drivers in the Hardware Abstract Layer (HAL) to
operate the IoT device (e.g., opening the lock).

The IoT device needs to be paired with the user’s Apple device
(e.g., iPhone with Home app): the user needs to be authenticated by
the HAP library with a secret eight-digit setup code (entered in the
Home app); once succeeded, she can use the Home app to establish
an encrypted connection with the device – a process similar to BLE
bonding [1]. The commands (e.g., open the lock) from the Home
app are sent through encrypted sessions to the HAP library, which
passes the commands to the ALL program.
Zigbee/Z-Wave compatible DMC. Mainstream IoT devices often
support a DMC built on top of the Zigbee [40] or Z-Wave [50]
communication protocol. Its in-device architecture is similar to
HomeKit, as outlined in Figure 1. Specifically, the manufacturer
integrates a protocol library in firmware, which we refer to as the
Zigbee/Z-Wave library, into IoT devices with hardware supports
for the protocols at the message transport layer. Similar to HAP,
the Zigbee/Z-Wave library processes commands received from the
transport layer, and passes them up to the ALL program, which
then operates the device (e.g., open the lock).

To control a device through this DMC, one should first pair the
device with a hub (called Z-channel hub in our research). For this
purpose, she needs to bind the hub to her account (with the hub ven-
dor) through the hub vendor’s app. Note that the hub vendor (e.g.,
SmartThings) may not be the device’s manufacturer (e.g., August).
The follow-up device-hub pairing process can have different levels
of protection, depending on the protocol version. More specifically,
the early versions (e.g., Z-Wave S0 security) do not have authentica-
tion in place and the later ones (e.g., Z-Wave S2 security) come with
protection similar to that for HomeKit pairing and BLE binding:
the user enters a secret code (install code of Zigbee [72] and device
specific key of Z-Wave [64]) into the hub app to enable the hub and
the device to exchange encryption keys, which are stored and used
for later secure communication between them.
Smart-speaker Seamless DMC. Smart speakers (e.g., Amazon
Echo [8] and Google Home [17]) offer another DMC, allowing one
to use voice or related mobile apps to control the devices. Smart
speaker DMCs have two different architectures, the local architec-
ture and cloud-based architecture. The local seamless architecture,
introduced to Google Home in 2019 [5, 46], is emerging: the smart
speaker connects to the IoT device using Bluetooth and sends the
commands directly to the IoT device without going through the
cloud. The device needs to integrate a smart speaker DMC library
into the device (see Figure 1). In contrast, the traditional cloud-based
architecture is more widely used: a user needs to first set up her
IoT device, for example, a LIFX bulb, using the LIFX app; then after
an access delegation from the LIFX server to the smart speaker’s
server (e.g., with an OAuth token [44] issuing to the latter), the
user can issue commands to the smart speaker, and the commands
go through the clouds to reach the LIFX bulb. In this paper we
study the local architecture of smart speaker which presents a new
DMC (called smart-speaker Seamless DMC or smart-speaker DMC),
while with the cloud-based architecture the IoT device in nature
uses the m-DMC to communicate with the smart speaker.

2.3 State Machine Model of DMCs



Figure 1: The different IoT control channels (Manufc. is short for Manufacture; H.W. is short for hardware)

Based on the prior models [56, 71] of IoT devices, we abstract a state-
machine model to describe any DMC’s operations in IoT devices.
Generally speaking, a DMC on an IoT device is characterized by
four states - Factory, Waiting for Network, Waiting for Binding, and
Running, as illustrated in Figure 2.

Figure 2: State machine model of a DMC

• Factory (Fct) State. This is the initial state of any DMC when the
device is at its factory setting. After booting the device, the state
will automatically transit to the next one (WfN, see below).
• Waiting for Network (WfN) State. At this state, a DMC is waiting
for joining a network to communicate with the user (user app or
other consoles). A network provision operation will drive theWfN
state to the next state (WfB, see below). Here, the network provi-
sion process depends on the communication techniques utilized by
specific DMCs: for example, HomeKit and manym-DMCs can lever-
age Wi-Fi, and thus the network provision involves connecting the
device/DMC to the local Wi-Fi network [47]; a Zigbee-compatible
DMC connects to a Zigbee hub through the Zigbee pairing process;
the smart-speaker DMC leverages BLE for communication, and
will involve a BLE pairing process to communicate with a smart
speaker.
• Waiting for Binding (WfB) State. After network provision, the
DMC can communicate with the user app/console and is ready to
bind with a specific user (a.k.a., user binding). In general, the first
user who binds the device becomes the owner of the DMC and
has full control over it. Typically other users are not allowed to
go through the binding process again. The user binding process
of different DMCs can be quite different: for example, HomeKit
DMC requires the user to manually enter a setup code (labeled on
HomeKit-enabled device [33]) in the app; some m-DMCs ask one
to pass a physical proximity challenge (e.g., by pushing the phys-
ical button on the Philips Hue Bridge [29]); certain m-DMCs (e.g,
ismartgate [23], LIFX [24]) make the process much simpler: anyone

can use the companion app to bind with the DMC automatically
when it is not bound.
• Running (Run) State. The DMC in this state is ready to receive
commands from the device owner and control its hosting device.
Through the user console (e.g., mobile app), the owner can issue
commands and manage users (e.g., adding a shared/guest user in
this DMC). The permission of the shared/guest user is subject to
revocation and expiry. In different DMCs, such policies are often
enforced by different components of their DMC architecture (e.g.,
the IoT cloud, the IoT hub or the IoT device).

Under any state other than Fct, a reset operation can drive the
state back to the Fct state. This can be done, for example, by pushing
a button on the device (for a few seconds).

3 UNDERSTANDING CODEMA
Overview. Our research shows that those co-located DMCs in the
wild are designed to independently manage an IoT device, without
communicating with each other their individual policies and coor-
dinating on their enforcement. This exposes a new attack surface,
allowing an unauthorized party to leverage one DMC to silently
bypass the owner’s device control implemented through a different
DMC. Although some manufacturer DMCs include the mechanisms
to manage third-party DMCs (e.g., allowing the user using the man-
ufacturer app to enable/disable a third-party DMC or control its net-
work provision, see Section 3.2), we found that suchmechanisms are
all flawed due to the lack of proper protocols for cross-DMC security
management/coordination. This problem turns out to be fundamen-
tal to the design of IoT access control, as discovered in our study
on 4 leading third-party DMCs integrated in mainstream devices.
Threatmodel. We consider a typical use scenario where the device
owner opts for some (typically one) but not all channels through
her favorite app(s), such as Apple Home, to manage the device,
which we believe is realistic given the hassle that configuring all
DMCs incurs (Section 2). This practice has also been confirmed in
our user study (Section 4).

Today, IoT devices often need to be shared with babysitters,
tenants, Airbnb guests, etc., who are granted temporary access. Such
a temporary permission has been considered by recent studies [52,
53, 61, 62, 69], and its real-world demand is evidenced from the
descriptions of vacation rental services and related blogs [2–4, 34].
Therefore, in some cases, we assume that a malicious user may



temporarily come in close proximity (e.g., a home) to target IoT
device(s): e.g., an Airbnb guest checks into a home equipped with
a smart door lock and a garage controller. Through the owner’s
management app, she may intentionally, temporarily share some
of her devices with the malicious user (e.g., the smart lock for door
opening during the guest’s stay).

The attacker aims to silently acquire persistent, unauthorized
control on the owner’s devices, including those once shared to him
with his access rights later revoked. In the meantime, we consider
that all components of a DMC are benign (e.g., the management
app, cloud, hub, hardware and software inside the device), and the
attacker does not physically alter the device (e.g., to disassemble
the device or solder wires).
Identification of Codema flaws. To identify the Codema flaws
in each device that supports multiple DMCs, we leverage a model-
guided approach. Generally, given a device, we first model all its
DMCs with finite-state-machines (Figure 2) considering the four
states discussed in Section 2.3, particularly identifying any depen-
dency relation between the state transitions of two DMCs: i.e., fully
configuring a DMC A (from the Fct to Run state) requires an ap-
proval/operation step through DMC B. Depending on whether or
not the dependency relation exists, the approach to assess the secu-
rity policy coordination between two DMCs is slightly different:
• Scenario 1: no dependency between DMC A and DMC B: (1) our
approach considers that the owner fully configures one DMC (e.g.,
DMC B, leaving DMC A dangling); (2) if the adversary can suc-
cessfully configure DMC A to gain device control without involve-
ment/awareness of the owner, our approach reports a potential
Codema flaw and further confirm it through end-to-end attacks.
• Scenario 2: DMC A depends on DMC B: (1) our approach considers
that the owner opts for and fully configures DMC B (leaving DMC
A dangling) and shares device-access rights with the adversary; (2)
leveraging the access-rights on DMC B, the adversary fully config-
ures DMCA to gain device access; (3) later the owner revokes the ad-
versary’s access rights usingDMCB; (4) at this stage, if the (unautho-
rized) adversary still has device-control via DMC A, our approach
reports a Codema flaw and confirms it through end-to-end attacks.

Notably, all devices we tested are vulnerable affecting main-
stream IoT vendors, demonstrating that the problem is general (see
Section 3.3). Since exploiting Codema flaws depends on how the
device owner configures and uses multiple-DMC IoT devices, we
report an attack feasibility study in Section 4, which shows that
Codema risks are realistic in the real world with serious practical
impact on IoT security. We discuss the limitation of the current
approach in Section 6.
Responsible disclosure. We reported our findings to all affected
manufacturers, including Apple, August, Abode, Philips, etc., which
all acknowledged the significance of the problems. Mitigation has
been deployed or is on the way.

3.1 Disjointed DMC Management
The DMCs in the wild are generally designed not to interfere with
each other’s operations. For example, the specification of Apple
HomeKit highlights that the setup process of HomeKit should not
depend on any operation in the manufacturer app, for the purpose

of ease of use [22]. It turns out that in mainstream devices, a DMC’s
state machine is unrelated to those of others, indicating that the
DMCs are meant to work independently without coordinating their
security policies. For such devices, as long as the owner leaves one
DMC dangling, the adversary has the opportunity to leverage that
DMC to control the device.

Figure 3: State machines of DMCs in the ismartgate device

Codema Flaw 1: DisjointedHomeKit andm-DMC. The ismart-
gate smart garage door controller [23] enables users to remotely
open and close their garage doors through either the ismartgate app
(m-DMC) or the Apple Home app (HomeKit). Both DMCs leverage
Wi-Fi to connect to the Internet. Figure 3 shows the state machines
of the two DMCs, whose state machines are fully disjointed.

Consider the scenario where the home owner opts for the Home
app to manage the garage door, through HomeKit, whose setup and
management (network provision, user binding, etc.) are not con-
tingent on the configuration of the m-DMC. This simple treatment,
however, brings in a security risk: the m-DMC on the device is left
open for user binding, while the HomeKit DMC has neither control
nor observation on the m-DMC, based upon Apple’s design. Note
that although the two DMCs are not contingent on each other, they
share the same HAL and hardware (Figure 1), including network
provision that drives the state transition.

As a result, an unauthorized user who is allowed to connect to
the home Wi-Fi, such as an Airbnb guest, babysitter, handyman
(see the user study in Section 4), can silently use the m-DMC to
set up the garage controller. This goes through the manufacturer’s
simple setup process: the malicious user leverages the ismartgate
app, which can scan and find the ismartgate controller connected to
the sameWi-Fi network automatically, to bind them-DMC with his
ismartgate account. Afterwards, the malicious user can remotely
control the garage door using the ismartgate app. Such unautho-
rized control, however, is unaware by the owner, whose Home app
shows that the device is under her control, and she is the only
one who can access the garage. We successfully conducted a PoC
attack with our ismartgate garage controller installed on a real
home-garage door. Video recording of the attack is available [49].
Codema Flaw 2: Disjointed Zigbee-based DMC and m-DMC.
The popular Philips Hue [45] devices include DMCs that can be
managed through both Philips Hue Bluetooth app (the m-DMC)
and alternatively a Zigbee-compatible hub (e.g., Philips Hue Bridge
or Samsung SmartThings hub), and managed through the hub ven-
dor’s DMC (e.g., using the SmartThings app [48]). However, the
m-DMC (based on Bluetooth for communication) and Zigbee com-
patible DMC are found to be completely independent, whose state



Figure 4: State machines of DMCs in the Philips Hue BLE
device

machines are completely disjoint (Figure 4). Similar to Flaw 1, se-
curity risk arises when the owner uses any single DMC but not
both.

Consider that the owner uses the Zigbee-compatible DMC and
the SmartThings app to manage her devices, which allows her to
control IoT devices from different manufacturers connected to the
SmartThings hub, including Philips Hue devices. In this case, the
owner does not need to bother installing Philips Hue app or con-
figure the Philips m-DMC at all. As a result, the m-DMC becomes
dangling and stays in its WfN state. Any user in the range of Blue-
tooth (330 feet [14]), including neighbors and even strangers outside
a home, can run the Philips Hue Bluetooth app to silently pair with
and control the device. More seriously, such malicious behavior is
completely oblivious to the SmartThings app running on the Zigbee
DMC, which receives no information about the unauthorized access
through the m-DMC.

We performed end-to-end attacks on our own Philips Hue Blue-
tooth plug, Philips Hue bridge, and SmartThings hub. The attacker
outside the room utilized the dangling DMCs to bind with the plug
without the involvement of the “device owner", gaining unautho-
rized control on the plug (switching it on/off).

3.2 Weak Cross-DMC Management
As mentioned earlier, some manufacturer DMCs include the mecha-
nisms to assert some level of control over third-party DMCs’ opera-
tions on the same device; e.g., allowing the user in the manufacturer
app to open/close a third-party DMC, control its network provision
or user binding process. A real example is with the Abode alarm hub:
the user must use the Abode app to generate a HomeKit setup code,
before she can pair the Abode device with her Home app (through
HomeKit). Such cross-DMC management can be abstracted through
the intersection between the state-machines of these DMCs, in which
one DMC’s state transitions are contingent on the operations/state
transitions of another DMC. For devices with such intersecting state
machines, we check whether the two DMCs can coordinate their
security policies. In particular, we inspect their user policies: if a
user has no/lost permission on the DMC used by the owner, we
further look into whether he can control the dangling DMC.
CodemaFlaw3: Insufficient cross-DMCcontrol onRun state.
August Lock [12] is among the most popular smart locks, which can
be managed by the August app (m-DMC) and HomeKit DMC. The
(iOS) August app allows its user to enable and disable the HomeKit

Figure 5: State machines of DMCs in the August lock

DMC (by simply toggling an ‘enable/disable’ switch), which by
default is disabled.

By inspecting the state machines of the DMCs, we found that
such protection is enabled since the August m-DMC imposes a
control switch on HomeKit DMC’s Run state, as illustrated in Fig-
ure 5. Specifically, we analyzed how the August app enables/disables
HomeKit on the lock, by reverse-engineering the app and examin-
ing the HomeKit documentations [19], which leads to the discovery
that the gap between Android and iOS platforms limits the capability
for August m-DMC to adequatelymanage HomeKit DMC. Specifically,
to impose control on the HomeKit DMC, the iOS August app needs
to generate a secret string, called additional authorization
data or AAD, and shares it with the Apple Home app on iOS devices
(through an iOS API updateAuthorizationData [35]). According
to the HomeKit specification [19], the HomeKit library integrated in
the device supports verification of the AAD for sensitive operations
(e.g., operating a lock), as designated by the device manufacturer:
that is, to operate on the August lock, the Home app (HomeKit
DMC) needs to present an AAD in its commands to the device. Since
the Home app and the iOS API are not available on Android and we
found no guideline from Apple on how HomeKit can be managed
on Android, the August Android app cannot work with HomeKit
(control it or monitor its status).

Such a limitation imposed by Apple introduces security risks
to the lock owner who utilizes the August Android app, since she
does not have full observation and control over her lock’s accessi-
bility status while an attacker running the August iOS app can have.
Specifically, when the owner temporarily allows a (malicious) user
to use her lock (e.g., a tenant, Airbnb guest, or employee) through
her August Android app, the user can abuse this temporary per-
mission and quietly enable the HomeKit DMC on the lock using
his iOS August app. The control acquired on the HomeKit DMC
lasts even after the owner fully revokes the user’s right (using the
Android app).
PoC attack. In our research, we implemented an end-to-end PoC
attack on our own August lock (3rd generation). Specifically, the
owner first set up her August Android app to control the device
and then temporarily invited a malicious user (e.g., a rental tenant)
to access her lock. Once given the access right, the user paired
his Apple Home app with the lock using the HomeKit setup code
on the lock, and then ran his August iOS app to enable HomeKit
(simply toggling the switch in the app to share the AAD to his Home
app). Once this happened, even after the owner later revoked the
malicious user’s access right through her August Android app (m-
DMC), the user was still able to control the lock with his Home app
(HomeKit DMC). The attack video is online [49].



Discussion. Our further investigation shows that, even the AAD
mechanism of HomeKit is not designed for secure cross-DMC man-
agement against Codema. Based on HomeKit specification [19], it
is optional (by default disabled), and designed for finer granularity
of authorization: the device manufacturer can generate a set of
AADs (as security tokens), and configure the HAP library to restrict
specific commands from the HomeKit channel (e.g., open/close lock)
using particular AADs; the AADs are shared with the Home app
(using the aforementioned iOS API updateAuthorizationData) of
intended users, so users assigned different ADDs assume different
permissions in the HomeKit channel to command the device.
CodemaFlaw4: Insufficient cross-DMCcontrol onuser bind-
ing (WfB state). In the absence of a standard, suitable cross-DMC
management protocol, besides Flaw 3, mainstream manufacturers’
DMCs also attempt to control the third-party DMC’s user binding
process to better control the device, which however is error-prone.

As a prominent example, Abode Alarm Hub is a top-rated smart
home security system [6]. It acts as a Z-Wave/Zigbee hub and can
be connected with other Z-Wave/Zigbee compatible devices to
enhance their security and usability: e.g., the user can set a rule
through the hub to raise an alarm when the window sensor detects
a motion. The hub also supports HomeKit. By looking into the state
machines of the HomeKit DMC and Abode m-DMC, we found that
the m-DMC introduces a control to manage the HomeKit DMC’s
user binding process (Figure 6). Specifically, the owner has to first
set up the hub through the Abode app, then she can acquire a
HomeKit setup code from the app, using which a user can bind the
HomeKit DMC and control it. Note that, although it sacrifices some
convenience, such a control prevents the adversary in the home
Wi-Fi with physical access to the hub from configuring HomeKit,
since the adversary does not have the setup code.

However, the protection turns out to be inadequate for securing
the temporary permission: the adversary (e.g., an Airbnb/hotel
guest) invited by the owner can acquire the setup code from the
Abode app to stealthily configure the hub’s HomeKit, binding his
account to the device, without being observed by the owner; later
even after the owner revokes his rights from her Abode app, he can
still maintain control over the hub through HomeKit and can even
disarm the siren when he breaks into the victim’s home. Actually by
exploiting this vulnerability, the adversary can also gain access to
other home devices like home cameras and sensors [7], since they
can all be managed by the Abode hub. Further, similar to August
Lock, Abode only manages the HomeKit setup code in its iOS app.
So the owner running the Android app may have no idea at all that
the HomeKit channel can be activated using the iOS version of the
manufacturer app. Even the Abode iOS app, if used by the owner,
does not show whether the HomeKit DMC is bound by others.
PoC attack. We demonstrated that the risk is realistic by perform-
ing a PoC attack on our Abode Smart Security Kit. The adversary
was able to disable the security siren on the hub from Apple Home
app by setting it to “stand by” mode even after the owner revoked
his rights through the Abode app (m-DMC).
Codema Flaw 5: Insufficient cross-DMC control on network
provision (WfN state). Also, a manufacturer’s m-DMC in the
wild may impose inadequate control on any state of the third-party
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DMC, in the absence of a standard, suitable protocol for multiple-
DMC management. As an example, Philips Hue devices can be
managed by smart speakers’ local DMC (Section 2), as well as by
the Hue Bluetooth app (m-DMC) — both DMCs rely on BLE for
communication. By looking into their state machines (Figure 4),
we found that although the m-DMC imposes control on the smart
speaker DMC’s network provision process, the protection is only
effective when them-DMC is first bound to the user, before the other
channel; otherwise, there is no protection for the smart-speaker
channel and the device becomes exposed to a practical Codema
attack through the m-DMC.

Specifically, if the device is paired with the Hue app (the m-
DMC through BLE) first, it will deny a new Bluetooth pairing
request. So, if the owner using the Bluetooth m-DMC wants to
control her device with a smart speaker, she needs to make the
device discoverable again for pairing with the speaker, through her
Hue app. However, such a cross-DMC control is conditional, based
upon the aforementioned assumption: it bestows a high privilege to
the m-DMC (through its app), yet still allows an alternative control
path without going through the m-DMC. Particularly, when the
owner first opts for the smart speaker to control the device, the
m-DMC of the device is left open and an unauthorized party in
the range of BLE (330 feet [14]) can use the manufacturer app to
silently pair with the device and gain control.
PoC attack. We performed a successful PoC attack using our own
Google Home Mini [18], Amazon Echo plus, and Philips Hue Blue-
tooth plug [32]. In our experiment, we first set up a speaker to
switch on/off the plug; then a “malicious user” ran the Philips Hue
Bluetooth app [28] to silently pair with the plug, and was thus able
to switch on/off the plug.

3.3 Measurement
To better understand the prevalence and impact of Codema prob-
lems in the wild, we searched devices on popular American and
Asian online stores (i.e., Amazon, Best Buy, Walmart, and Taobao)
using smart-home and IoT related keywords (e.g., “smart light bulb”,
“smart garage opener/controller”, “smart lock/camera/plug”) and
manually browsed 200 most popular devices sorted by customer
ratings or sale numbers. Through manually reading their prod-
uct descriptions online, we observed a total of four third-party
DMCs, i.e., HomeKit DMC, Zigbee/Z-Wave compatible DMC, and
smart-speaker Seamless DMC.We further identified the devices that
support multiple DMCs, from which we randomly selected and pur-
chased 14 highly rated and popular devices (Table 1) covering mul-
tiple device types including cameras, lights, locks, plugs, hubs, etc.



We analyzed all the 14 devices with end-to-end exploit exper-
iments and confirmed that they were all vulnerable to Codema
attacks, potentially affecting at least millions of users (estimated
by the download numbers of their mobile apps on Google Play).
Table 1 shows the results including 25 successful exploits (each row
without “N/A” indicates a successful end-to-end exploit). Each de-
vice can have multiple Codema flaws and can be subject to multiple
exploits depending on which DMCs the victim/attacker uses. In
general, the DMCs if dangling, are exploitable by the adversary. We
observe that the DMCs on 11 of the 14 devices (except Abode, Au-
gust, and Yeelight) are completely disjointed (Flaw 1 and 2), which
demonstrates that the DMCs generally work independently without
coordination on most devices.

Table 1: Summary of Measurement Results

Device Victim’s
DMC

Exploitable
DMC

Flaw
Type

Google Play
App Installs

Abode Alarm Hub M H Flaw 4 5k+
Aqara

Camera G2H
M H Flaw 1 10k+H N/A

August Smart Lock
Pro Gen3

M H Flaw 3
500k+Z Flaw 5

M and H Z Flaw 5
M and Z H Flaw 3

iHome plug M H Flaw 1 100k+H N/A
ismartgate

garage controller
M H Flaw 1 5k+H M Flaw 1

Koogeek plug M H Flaw 1 10k+H N/A

LIFX bulb M H Flaw 1 500k+H M Flaw 1

Meross Smart Plug Mini M H Flaw 1 500k+H N/A

MiHome Lamp
M H Flaw 1

10,000k+Yeelight Flaw 4
H M Flaw 1

M and Yeelight Flaw 1

Philips Hue BLE bulb
Philips Hue BLE plug

M(BLE) Z Flaw 2
500k+Z M(BLE) Flaw 2

S Z Flaw 2
M Flaw 5

Philips Hue
bridge

M H Flaw 1 5,000k+H M Flaw 1
Refoss Smart Wi-Fi
Garage Door Opener

M H Flaw 1 50k+H N/A
Yeelight

Lightstrip Plus MiHome Yeelight Flaw 4 1,000k+

M stands for m-DMC, H for HomeKit, Z for Z-channel, S for smart speaker.

Note that for the five devices with “N/A” fields in the table, once
the owner/victim uses HomeKit, the dangling m-DMC becomes
not even usable by legitimate users since the device manufacturer’s
mobile apps can no longer discover or bind with the device. This
might be due to functionality bugs rather than a security design,
since for the same devices, if the owner uses m-DMC, our exploits
using HomeKit succeeded as shown in the table. Note that the
dangling m-DMC on such devices may still be exploited with addi-
tional engineering efforts of the adversary. For example, although
MiHome Lamp’s m-DMC no longer advertises its service/existence
to the local area network after its HomeKit DMC is used (so the
MiHome mobile app cannot automatically discover the device), the
m-DMC is not closed and we were able to use a crafted program (by
modifying the MiHome mobile app’s binding process) to manually
connect with the device on its m-DMC, configure and control it.

Discussion. Device events (i.e., push notifications shown onmobile
phones when an IoT device is operated) are not a solution to rely on
to address Codema threats. Typically the events are not available
(with mainstream vendors such as August, ismartgate, LIFX, Philips,
and Google-Home) or do not provide timely support for mitigating
Codema threats. Above all, all Codema flaws enable attackers to
gain device-control unaware by the owner. When the control is
exercised (e.g., turning off a plug/siren/door), harms could have
immediately been done to the owner even if events are issued (e.g.,
turning off the alarm/lock during a midnight break-in).

Moreover, for most exploits (18/25) we performed, under the
apps’ default setting, no notification events were observed. For
other six exploits, the owner/victim usesHomeKit-DMC that pushes
notifications for device operations, and might notice exploits have
occurred. However, to receive HomeKit notifications remotely, the
owner must configure a separate Apple-TV/iPad as a HomeKit-
hub [42] in her house. Such a hardware/configuration requirement
raises the bar for using notification as Codema warning. Also, in
our study, the only m-DMC app that pushes notifications for device-
operations is Refoss app when the Refoss garage door has a status
change. Again, the notification is after-exploit (after the garage
door is already opened by the adversary) and the miscreants could
have entered the building leveraging the Codema exploit.

4 ATTACK FEASIBILITY STUDY
The Codema risk is related to human behaviors: e.g., whether the
owner of an IoT device leaves open unused DMCs, whether she
tends to grant the access to the device to the party not fully trusted
and whether she is informed of the risk. In this section, we present
a study that seeks the answers to these questions, from both the
device owner’s perspective (the way she configures and shares the
device) and the manufacturer’s perspective (the way its customers
have been instructed).

4.1 The User Perspective
We performed an on-site user study to investigate two key issues
for understanding the significance of Codema: (1) how a typical
user configures and uses her IoT devices with multiple DMCs, and
(2) how likely our pre-conditions for each attack in Section 3 can
be satisfied in practice. Such conditions are summarized as follows:
• C1 (All Flaws): The owner leaves her unused DMC at its factory
setting. That is, the device owner opts for some but not all DMCs
to manage a device.
• C2 (Flaw 1, 3, 4): The adversary can access the target device’s Wi-Fi
network.
• C3 (Flaw 3, 4): The owner grants the adversary a temporary access
to the target device.
Recruitment. Under an IRB approval, we recruited 24 participants
from our organizations, based on their IoT experience, education
background, etc.1 Particularly, most participants (18/24) have IoT
experience. All of them have a technical or related education back-
ground (e.g., pursuing a Bachelor or graduate degree in Computer
Science). Their ages range from 18 to 40 (<20: 4 people; 20-30: 19

1Due to COVID-19, we carefully arranged our study to follow the CDC guidelines,
keeping social distancing, limiting the number of individuals in a room, etc.



people; 30-40: one person). 8/24 are female and 16/24 are male.
These individuals were selected since we believe that ones with
IoT experience and proper technical background are more likely to
securely configure and use devices than an average user. Note that
this selection bias tends to make our findings more conservative
when estimating the impact of the Codema risk.
Procedure of the user study. Our user study took each partici-
pant 20-30 minutes to finish the assigned task, with a compensation
of 15 US dollars. During the study, each participant was asked to
freely configure and use an IoT device with user manuals provided
(chosen by the participant from a MiHome lamp pro, LIFX bulb,
and Aqara camera). These devices all support both HomeKit and
m-DMC and the experiment was conducted in a home-like envi-
ronment. After they finished setting up the device, we recorded the
DMC(s) that was/were configured and the time it took to finish the
configuration.

Then we asked the participants to complete a questionnaire,
which covers the following key issues (among others): (1) why
they did or did not configure/use both DMCs; (2) under what
circumstances they would share Wi-Fi and IoT devices with others.
All survey questions are detailed in Appendix A.
Results. This user study shows that the preconditions for Codema
attacks can be easily met in practice, which poses a realistic threat
to a big portion of IoT users. We elaborate on the findings below:

C1: 20 participants (83.3%) configured only one DMC. The aver-
age time for configuring a DMC is nine minutes for all participants,
and thus, most of them had enough time to set up another DMC
should they intend to do so. Interestingly, when we asked how
much time they expect to spend in configuring a device before use,
54.2% of the participants answered “less than 5 minutes”, with 37.5%
of them indicating “5 to 10 minutes”. This suggests that an ordi-
nary IoT user might not want to take additional time to configure
another DMC.

We also explicitly asked the participants whether they want
to use both DMCs (both apps) to control a device. 95.8% of them
preferred not, with comments such as “it is enough with one app”.
This is expected, since many mainstream vendors such as Apple
have long been advocating low-hassles even “zero configuration”
device setup [9, 22]. Hence, we believe that when the vendors
support multiple DMCs, they aim to provide their users flexibility,
not the burden to configure and use all channels.

Also interestingly, 12 participants (50%) stated that they never
noticed that the device could be controlled by multiple apps during
the setup and device use (although the user manuals do advertise
this feature). The above results indicate that in a real-world scenario
a substantial portion of IoT users would not configure or manage
all DMCs, leaving them dangling.

C2: Our survey results show that most participants are willing
to share their Wi-Fi with others when necessary, including Airbnb
guests (58.3%), tenants (62.5%), babysitters (62.5%), temporary work-
ers (33.3%) (e.g., a plumber), neighbors (29.2%), and even strangers
who seek for help (8.3%). Even after sharing the Wi-Fi, most partic-
ipants (79.2%) expect that other users should not be able to access
their IoT devices in the same Wi-Fi network, unless they explicitly
grant them the access. Note that, this expectation is in line with the

mainstream DMCs’ security policies assumed by device vendors,
but Codema attacks invalidate such a security property.

Worse still, our user study also shows that most people do not
change Wi-Fi passwords for a long time (for months: 16.7% of users;
for years: 33.3%; never: 45.8%), which gives the attacker a large
attack window after he gets the Wi-Fi access. Interestingly, one
participant with significant IoT experiences stated that “I almost
never change the Wi-Fi password because I have to re-configure
all the IoT devices again after a reset of the Wi-Fi password.”

C3: Based on the recent study [61], IoT users are willing to share
smart home devices with other people, e.g., Airbnb guests, babysit-
ters, visitors. One of our attacks (Flaw 3) require the adversary to
get the temporary permission for editing devices, which is found
to be completely realistic: the participants we interviewed were
willing to grant such an access right to Airbnb guests (25%), tenants
(29.2%), babysitters (29.2%), and workers(12.5%). This indicates that
the Codema risks are indeed high, for example, considering the
large number of Airbnb hosts and tenants in the wild.

4.2 The Vendor Perspective
To understand whether the vendors are aware of the Codema risks
and help their users avoid the risks, we inspected both the speci-
fications and apps of all 14 devices we studied. Results show that
vendors provide limited guidance (if any) to users.
Specifications. After inspecting themanuals of the IoT devices that
support multiple DMCs, we found that they only provide instruc-
tions for configuring individual device DMCs without requiring the
users to set up all channels. This clearly shows that the vendors are
not aware of the Codema risks, let alone to instruct their customers
to avoid the risks.

Worse still, some manuals even miss DMCs their devices support,
possibly due to the complexity of the IoT supply chain. For example,
the manual of MiHome Lamp (branded and sold by Xiaomi) states
that the device can be managed by HomeKit and MiHome; however,
we found that it also includes the Yeelight DMC, which can be
abused to acquire unauthorized device access. It turns out that
Yeelight is one of Xiaomi’s original equipment manufacturers and
MiHome Lamp reuses its firmware, thereby inheriting its DMC,
even though the manual fails to mention this hidden channel. Also
interesting is the observation that device manuals could become
out-dated after the firmware updates. We found that some vendors
(Abode and Yeelight) use firmware updates to add additional DMCs
to their devices, but users likely will fail to get informed about such
changes. For example, Abode upgrades the firmware of the hub to
support HomeKit, which can leave the device owner (especially
who uses an Android phone) vulnerable to Flaw 4 (Section 3).

As mentioned earlier, Codema attacks on HomeKit require its
setup code. Such codes are on the printed labels of all devices
(except Abode and Yeelight Lightstrip) we studied, as suggested by
Apple [19], yet none of the device vendors inform their users of the
importance of the codes and ask them to keep the codes confidential.
Instead, the only instruction we found from the manufacturers is:
“Please do not lose the code that is at the bottom of the device.
Adding the device back will need the setup code after factory reset.”
Manufacturer app. Also by inspecting all IoT appliances’ com-
panion apps, we discovered the significant differences between a



device’s Android app and iOS app, which exposes it to Codema risks.
Specifically, none of the Android apps provide interfaces for man-
aging HomeKit, rendering the channel vulnerable to the exploits
unnoticed to Android users. Also interesting is the observation
that Koogeek’s iOS app only works with HomeKit, not even its
own m-DMC. As a result, the iOS user inevitably leaves Koogeek’s
m-DMC dangling.

Further, we found that Philips Hue provides two official apps,
the Philips Hue [27] app (old) and the Philips Hue Bluetooth [28]
app (new). The new app is meant to control its new Bluetooth-
enabled devices through the BLE DMC, a functionality missing in
the old app. Therefore, those who use the old app to control their
Bluetooth-enabled Philips devices are not aware of the presence of
the BLE channel, and therefore vulnerable to attacks (Section 3.1).

5 MITIGATING CODEMA
Given the serious impact of Codema on the IoT ecosystem, find-
ing effective mitigation becomes imperative. In this section, we
describe the design (Section 5.2) and implementation (Section 5.3)
of a new protection mechanism called CGuard that enables the
first systematic and also practical cross-DMC access control. We
thoroughly evaluated CGuard’s usability, performance overhead,
effectiveness and feasibility for real-world deployment (Section 5.4).

5.1 Goals and Challenges of Protection
Root causes of Codema risks. Our user study shows that a user
typically does not bother configuring all supported DMCs on her
device and tends to leave some DMCs open. As a result, she cannot
have full control and visibility over her device. Actually no tech-
nique today empowers her to conveniently and effectively manage
unused DMCs, nor is she offered any assurance that the DMCs that
she does not choose pose no threat to her device control.
Ideal solution and challenges. Considering both security and us-
ability, an ideal design of multiple-DMC IoT is expected to have the
following properties: (1) given a device (under its factory setting),
the user can choose any of its supported DMCs; (2) any DMC she
opts for helps her fully control the device by coordinating security
policies across all DMCs. We discuss such a clean-slate design in
Section 6. In practice, however, achieving both goals can be hard in
the short term since different stakeholders — including providers
of third-party DMCs (e.g., Apple, Amazon, Google, Zigbee Alliance,
Z-Wave Alliance) and mainstream device manufacturers — need to
adopt a standardized cross-DMC management protocol. For this
purpose, they are expected to modify their current DMCs to enable
full interoperability of security policies between their respective
DMC protocols, which can be hard. Also making the task challeng-
ing are their heterogeneous architecture (their respective security
policies/enforcements span clouds, hubs, and devices) and implicit
security assumptions made by different vendors [69].
Practical mitigation goals. Before an ideal long-term solution
can be agreed upon, fully developed and deployed, we propose to
build practical, light-weight, and effective mitigation that can be
easily adopted by device manufacturers to mitigate Codema attacks
without requiring a change to the current third-party DMCs. We
summarize two design goals for such a mitigation:

• Control Goal (C-Goal): Give the user the option and tool to fully
control her devices (managing all DMCs’ accessibility status). Al-
lowing any DMC of the user’s choice to manage other DMCs is
hard, which requires a universal cross-DMC management protocol
adopted by many stakeholders. Instead, we seek an access control
mechanism that can be easily adopted by the device manufactur-
ers, and enable users to control (enable/disable/monitor) dangling
DMCs. This is possible by looking at the in-device technical stack
in Figure 1, where the manufacturer’s ALL logic is in the position
to oversee all DMCs and can be enhanced with a centralized access
control framework (see the design in Section 5.2).
• Usability goal (U-Goal): Despite the C-Goal, we envision that users
may not have to leverage the above capabilities. Hence, a mitigation
design should also offer the assurance that unused DMCs pose no
risks to a user’s device, at no additional cost to the user: that is, the
mitigation should have minimum impacts on usability. Note that, a
key usability benefit of the current multiple-DMC IoT paradigm is
that given a device under its factory setting, the users can choose
any DMC it supports [21, 46], for example, when she has already
used Apple Home to manage all her other devices. A mitigation
design should preserve such usability, as confirmed in our study
(see Section 5.4).

5.2 CGuard: Design of Codema Mitigation
This section presents Channel Guard (CGuard), a new, light-weight
access control framework for cross-DMC security management. De-
vice manufacturers can easily integrate CGuard into their firmware
to enable them-DMC to achieve the above mitigation goals without
depending on all third-party DMC providers to fix their problems.

Figure 7: Architecture of CGuard.

Architecture. To achieve the C-Goal, our core idea is to have a cen-
tralized access control framework to oversee all DMCs and govern
the accessibility of all DMCs on a device. The insight is that unlike
the m-DMCs interfering with third-party DMCs’ state machines
and attempting to manage their individual policies and internal
states, which we show is error-prone (Flaw 3 to Flaw 5) in the
absence of a universal cross-DMC management protocol enabling
policy interoperability, we introduce an access control framework
(CGuard) that utilizes the device manufacturer’s Application Logic
Layer (ALL) in the device to control each DMC’s accessibility sta-
tus (enabled/disabled). CGuard helps ensure that no DMC is left
in an unexpected accessibility status, such as dangling or being
enabled/accessed stealthily by the attacker.



At a lower level, CGuard wraps the underlying DMC libraries
on behalf of device manufacturers, exposing three universal, DMC-
agnostic APIs (detailed below) for the ALL program to enable, dis-
able, and monitor individual third-party DMCs. For this purpose,
we built into CGuard three key components:
• Policy Store. It stores the centralized policy that specifies each
DMC’s accessibility, either on or off.
• Channel Switch. It provides two APIs enableChannel(name) and
disableChannel(name) for the manufacturer’s ALL program to
enable/disable a third-party DMC by specifying a channel name.
The two APIs update the policy to the Policy Store and internally
invoke corresponding APIs in the DMC libraries to start/stop a
DMC’s operations (see implementation details in Section 5.3).
• Channel Monitor. It provides the getChannelStatus(name) API
for manufacturer’s ALL program to monitor/check the accessibility
status (on/off ) of each third-party DMC. The API reads the policy
from the Policy Store.

With CGuard, when a user wants to enable/disable a DMC (the
C-Goal), she needs to use the m-DMC (through the manufacturer
app) to set up and bind with the device. In the manufacturer app,
she can toggle on/off for individual third-party DMCs, and such a
command will be sent through the m-DMC to the ALL program,
which calls corresponding CGuard APIs for DMC control.
The principle of fail-safe default. For an owner who opts for
m-DMC, CGuard automatically closes third-party DMCs, until she
re-enables them using the manufacturer app. However, the above
channel control cannot be achieved if the user first opts for a third-
party DMC (requiring a universal cross-DMCmanagement protocol,
as discussed earlier). If a user chooses HomeKit, for example, to set
up and use her devices, CGuard automatically closes all other DMCs
(including the m-DMC), since HomeKit cannot control/oversee
other DMCs. CGuard ensures that those DMCs remain silently
closed until the user factory-resets the device. This ensures no DMC
is dangling with minimum efforts from the users, in particular for
many who prefer not to manage DMCs at all. Our design is highly
acceptable to IoT users, as shown in our user study ( Section 5.4).

5.3 Implementation of CGuard
Overall, we implemented CGuard in 1381 line of C code (released
online [49]). To implement the Channel Switch APIs, we manually
inspected the third-party DMC libraries’ documentations, API lists,
and/or source code, including the HomeKit open-source ADK [20],
the Ti Z-stack [38] (Zigbee DMC), and the Amazon Alexa Gadgets
Toolkit [41] (smart speaker DMC). We identified their respective
APIs (Table 2) to start/stop their DMC’s execution (a typical manu-
facturer also leverages these APIs to run individual DMCs in the
devices). The Policy Store is very light-weight as well, recording
each DMC’s on/off designation in a few bytes.
An end-to-end deployment. We deployed CGuard to a proof-
of-concept smart LED light we built on Raspberry Pi 3b (running
Raspbian GNU/Linux 10), which is popularly used for IoT device de-
velopment. The smart light integrates a PoC m-DMC we developed
and multiple third-party DMCs including HomeKit (Wi-Fi), Zigbee
compatible DMC, and a smart-speaker DMC. For the manufacturer
DMC, we developed a prototype manufacturer app on Android

(developing an iOS app is similar and trivial). The communication
between our Android app and the light leverages a typical cloud-
based architecture (see Section 2): our app sends commands to an
IoT server (using MQTT protocol[43]) we deployed on AWS IoT
core [13], which forwards the commands to the LED light. To let
our light support third-party DMCs, we integrated their libraries
to the firmware, i.e. HomeKit open-source ADK, Z-Stack™, and the
Amazon Alexa Gadgets Toolkit.

Our light can be turned on/off using our Android app, Apple
Home app (on an iPhone), and other DMCs’ console (such as Alexa
for the smart speaker DMC). To use CGuard, our Android app
includes switches to allow the owner to turn on/off individual third-
party DMCs, whose commands go through CGuard in the device
and achieved the channel control. The source code of our PoC smart
light and mobile app (in two versions with and without CGuard)
is released online [49], along with a video demo showing how the
mobile app manages the light.

Table 2: Implementation of Channel Switch in CGuard

DMC Name DMC Library APIs Used (to enable/disable)

HomeKit HAPAccessoryServerCreate()
HAPAccessoryServerStop()

Smart Speaker (Alexa) AlexaGadget.set_discoverable()
AlexaGadget._bluetooth.unpair()

Zigbee DMC ZDOInitDevice()
ZDO_ProcessMgmtLeaveReq()

5.4 Evaluation
This section reports our evaluation of CGuard on its usability (for
end users), performance, the level of effort for the manufacturer to
integrate, and effectiveness in secure channel control.

5.4.1 Usability. To ensure that CGuard is easy to use for normal
IoT users (see U-Goal in Section 5.1), introducing minimum or no
impacts on usability, we performed a user study with 72 users
in North America and Asia including many with non-technical
backgrounds. The result demonstrates that our protection is well
received by users. We elaborate the study as follows.

Recruitment. Under the IRB approval of our universities, we
recruited 72 participants from three universities (in North America
and Asia) or from local communities. Their ages span a wide range
(18-20: 18 people; 21-30: 41 people; 31-40: 5 people; 40-50: 1 person;
50+: 7 people); 33/72 are female; 29/72 do not have an IT-related
education background; 57/72 had experience of using IoT devices.

Procedure of the user study. We interviewed 30 participants
on Zoom, interviewed 17 participants face-to-face and asked the
rest (25) to finish an online survey while practicing social distancing
following CDC guidelines due to COVID-19. During the interview,
each participant was asked to watch a short video that introduces
the Codema risks. The video includes less technical details to ensure
that non-technical participants can easily understand the Codema
risk (i.e., unused IoT channels can enable an attacker to control the
device). We have released the video online [49], which can also be
used to educate the general public. We then asked each participant
to finish a questionnaire, taking about 10-20 minutes with 15 USD
of Amazon gift card as compensation.



The questionnaire includes the following key questions to better
understand the usability of CGuard for general users: (Q1) whether
the users believe that the Codema risks should be addressed; (Q2)
whether it is easy to use CGuard to enable/disable a DMC; (Q3)
whether the users favor CGuard’s automatic/default closing of un-
used DMCs; (Q4) whether it is important to freely choose any DMC
supported on a device. Further, in the questionnaire, we require
the participants to briefly explain each choice they made. The full
questions are presented in Appendix B.

Results. In general, the users agreed that it is imperative to
address the Codema risks, and favored the usability of CGuard:

Q1: All participants consider that the Codema risk is serious
and needs a serious fix. They all agree that there must be a way to
securely control the channels they do not use.

Q2: Almost all (69/72) participants agree that CGuard provides
an easy way (e.g., toggling a button in the manufacturer app) to
enable/disable a channel. The other 3 participants think the manu-
facturer should provide a fully automatic protection, rather than
relying on the users to perform any operation.

Q3: Almost all (70/72) participants favor CGuard’s automatic, de-
fault “off” status for unused channels (including both m-DMC and
third-party DMCs). In their explanations (required in the question-
naire), more than 52 participants proactively, explicitly commented
that automatic turning off needs the least user efforts and is pre-
ferred. In the meantime, 18 participants explicitly expressed that
they favor the capabilities and options CGuard offers to manually
control DMCs through the manufacturer app.

Q4: Most participants (58/72) indicate that it is very important
to freely choose any DMC supported on a device to set up and use
a new device. Such usability benefit is preserved by CGuard.

5.4.2 Performance overhead. Based on our end-to-end deployment
– the PoC smart light supporting multiple DMCs (see Section 5.3),
we evaluated the performance overhead of CGuard. We recorded
the run-time memory and binary file size of the implementation
with and without CGuard. Results show that it only uses 0.88%
(4KB/452KB) and 0.72% (4KB/556KB) of run-time memory and
storage, which is negligible. To evaluate the operation delay, we
recorded the time from a command is issued from our Android
app to it is executed by the device. We repeated the experiment 20
times: on average, it took 2094ms and 2088ms with and without
CGuard respectively for the command to reach the device. The
delay introduced by CGuard is negligible compared to the delay of
network and server processing.

5.4.3 The level of efforts for manufacturer adoption. Based on our
end-to-end deployment, we compared the amount of source code of
the manufacturer DMC with and without CGuard integrated to our
smart light. Results show that it requires little effort to integrate
CGuard.

The device firmware. To integrate CGuard, we added about
182 lines of C code to the ALL program (see Figure 7). The added
code is used to (1) process and interpret the commands (to en-
able/disable/monitor a DMC) received from the cloud, and (2) in-
voke the CGuard APIs to enable/disable/monitor the DMC.

The mobile app. To support CGuard, we added 448 lines of
Java code to our Android app. The added code is used to (1) add UI

switches to toggle on/off for third-party DMCs such as HomeKit,
(2) the code logic to respond to user actions on the switches; (3)
upon a user action on the switch, send commands to AWS IoT Core
by invoking APIs provided by AWS SDK.

5.4.4 Effectiveness. After the owner binds any channel, CGuard
proactively closes unused ones, leaving no channels dangling. Specif-
ically, if the owner uses m-DMC, he can use our Android app to
enable/disable any DMC on the device and check the status of all
DMCs (see the video demo online [49]).

Note that an attacker who is able to temporarily access the
device may try to factory-reset the device as an attempt to bypass
CGuard. However, the owner can easily observe such anomalies
since factory-resetting under CGuard resets all DMCs and causes
the owner to immediately lose control of the device (requiring a
fresh setup to re-gain control). Interestingly, some vendors (e.g.,
August) only allow the owner who sets up the m-DMC to factory-
reset the device, which can also mitigate factory-resetting attacks.

6 DISCUSSION
Lessons learnt. The most important lesson learnt from our re-
search is the caution one should take when integrating multiple
DMCs into a single device. In the absence of a standardized, fully co-
ordinated cross-DMC management, there is no guarantee that such
DMC integration would not inadvertently bring in new security
flaws, exposing the device to unauthorized access. More specifically,
without proper mediation on the different DMCs, which all have
a full and independent mandate on the device, there is a risk that
security policies configured and enforced through one DMC could
be violated by the access through another DMC, when they are
utilized by different users.

Actually, not only the DMCs from different parties failed to
coordinate, but even those from the same manufacturer are not well
synchronized for security policies. We further found that HomeKit
internally has two channels, a local channel to directly connect an
iPhone (with the Home app) to the IoT device and a cloud-based
channel where commands from the Home app go through HomeKit
cloud to reach IoT devices. When the two channels have conflicting
security policies, there is no proper protocol to resolve the issue,
leading to a privilege escalation attack (see Flaw 6 in Appendix C).
Clean slate design. To fundamentally address the Codema risk,
we envision a clean-slate design with a cross-DMC management
standard that allows different DMCs to work together for consis-
tent, fine-grained device control. We propose two principles for
designing and implementing such a standard:
•Multi-layered and coordinated authorization. A fundamental cause
of Codema is the design of today’s DMCs, which work indepen-
dently and have the same control rights on a device. The problem
can be solved by multi-level security, with some DMCs (such as m-
DMC) given a higher privilege than others. Such a DMC can help co-
ordinate policy configurations from different channels and resolve
conflicts to provide coherent, comprehensive protection, under the
command of the authorized party (typically the device owner).
• Standardized middleware and interfaces. The heterogeneity of
DMCs in terms of their architectures (e.g., with or without cloud)



and the technical stacks (e.g., HAP, Zigbee, Z-Wave) has made it
difficult to configure and enforce security policies across DMCs.
Therefore it is imperative to design standardized middleware to
make different DMCs compatible and interoperable. Equally impor-
tant is to define standardized software interfaces and protocols to
be followed by DMC developers, which allow different DMCs to
exchange user information, access control policy, etc.
Othermitigation strategies observed. After we reported Codema
vulnerabilities to affected vendors, some of them have deployed
mitigation. Without a systematic approach like CGuard, their miti-
gation appears to be ad-doc, less usable and secure. For example,
after meeting with us, August closes all third-party DMCs by default
and device owners must configure/use the m-DMC (August app) to
enable/close third-party DMCs. In addition, when the owner uses
the August app to remove other/guest users, a popup warning is
shown to communicate the Codema risks: "The removed user may
still have access via HomeKit". Compared to CGuard, (1) it
does not satisfy the U-Goal since it forces the owner to use m-DMC
first (see Section 5.1); (2) its cross-DMC control (enabling/disabling
HomeKit) is only available on August’s iOS app (subject to Codema
Flaw 3). As another example, the m-DMC of MiHome lamp will
be automatically closed once the user fully configures the lamp
with HomeKit DMC, which only partially exercises the fail-safe
default principle (see Section 5.2 ). The problem is, if the owner opts
for the m-DMC, the HomeKit DMC is still left open silently and
can be bound and controlled by the adversary. Moreover, after our
Codema report, LIFX has enhanced their protection by updating
the LIFX iOS app to force its users to take control of both HomeKit
and LIFX’s m-DMC during the setup, which would protect those
running the LIFX iOS app. However, the iOS users who choose to
use the Apple Home app and all Android users are still at risk.
Codemadiscovery at scale. Our current approach to detect Codema
flaws (Section 3) has limitations in identifying the dependency rela-
tions between the state transitions of two DMCs since we relied on
manual efforts to set up individual DMCs and confirmwhether fully
configuring a DMC relies on any operation/approval in another
DMC (e.g., configuring HomeKit DMC in the Abode Alarm Hub
requires a setup code generated in the m-DMC’s app, see Figure 6).
Fully automating the step can be challenging since configuring a
DMC often requires manual steps such as scanning a setup code
or device-specific physical operations. To further scale our work
and enable a large-scale assessment of Codema flaws involving
more devices, an improved approach can be built on our current
model-guided approach by automating the model building process.
In particular, we may extract the model of each DMC on a device by
exploring semantic based UI analysis of the DMC mobile apps, in
particular identifying whether the setup process of a DMC involves
a step in another DMC.

7 RELATEDWORK
IoT platform security. Many efforts have been made to analyze
the security problems of the IoT platforms, such as [51, 54–59,
65, 68, 70, 71]. [51] provided a methodology to analyze security
properties for home-based IoT devices from the perspectives of
attack techniques, mitigations, and stakeholders. [54, 55, 57, 58,
65, 68, 70] presented methods to detect inter-rule vulnerabilities,

mishaving devices, malicious apps and security policy violations.
[71] and [56] found problematic device management of IoT clouds
based on state machine model of a single device. [69] studied the
IoT cross-cloud delegation process (the cross-cloud delegation goes
from the manufacturer-DMC’s backend server to another cloud). In
contrast, our work attempts to understand and reveal the security
risks of co-exiting of multiple DMCs in the same device instead of
identifying the flaws in a single DMC or platform.
IoT access control. Access control on today’s IoT ecosystem is
not only distributed but also heterogeneous and ad-hoc. To cope
with the new challenges arising in today’s IoT access +control,
[53] presented WAVE, which fulfills the requirements of today’s
complicated IoT delegation by offering fully decentralized trust,
which supports decentralized verification, transitive delegation and
revocation. [60] also introduced Decentralized Action Integrity to
prevent an untrusted IoT platform from misusing OAuth tokens.
[67] presented a user-centered authorization mechanism to protect
users from overprivileged apps in Samsung SmartThings, while [63]
proposed a fine-grained context-based access control system for
Samsung SmartThings. [66] presented “environmental situational
oracles”, which encapsulate the implementation of how a situation
is sensed, inferred or actuated, to avoid over-privilege, redundancy,
inconsistency, and inflexibility in today’s IoT situational access
control. By contrast, we attempt to fix the access control problem
caused by Codema, which is new and unexplored, by developing
CGuard, a new technique that can be unilaterally implemented by
the device manufacturer to fully mediate third-party DMCs without
any change to their designs.

8 CONCLUSION
This paper reports the first systematic study on the security risks
introduced by the presence of multiple DMCs on IoT devices. Lack
of coordination across these DMCs exposes a new attack surface,
allowing the unauthorized party to circumvent the protection en-
forced by one channel through another channel. Our study shows
that this security weakness is pervasive and fundamental. Our
user study and measurement analysis further demonstrate that the
security risk is realistic and significant. To mitigate the risk, we
introduced a new access control framework that enables the IoT
manufacturer to uni-laterally control third-party channels’ acces-
sibility status. Our evaluation provides further evidence for the
effectiveness, usability, and feasibility of the design.
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A SURVEY QUESTIONS OF THE USER STUDY
ON THE ATTACK FEASIBILITY

Part A: face-to-face study follow-up questionnaire

(1) Did you learn from the specifications that the device can be
configured to be controlled by BOTH the device vendor’s
app and the Apple Home app?

(2) Did you configure both the apps? Why did or did not you
configure both of the apps?

(3) If you have multiple smart home devices, do you prefer to
control all your devices with a single mobile app, instead of
using different apps for each device?
Yes, No, Do not care.

(4) Do you have any security concerns based on your setting up
experience just now? If yes, what are they?

(5) How long would you expect to set up an IoT device before
you are ready to use it?
Less than 5 minutes, 5 to 10 minutes, 10 to 20 minutes, Do
not care.

Part B: Imagine yourhouse/apartment hasmany smart home
devices, including but not limited to smart lock, thermome-
ter, lighting system, garage door controller, alarm system,
Hub, etc. You have already set all of them up. These devices
are working together at your home network.

(1) Would you share your home Wi-Fi with the following peo-
ple if he/she is asking for accessing your home Wi-Fi tem-
porarily? (Please assume you were an Airbnb host and were
renting your apartment/house out.) [multiple choices]
Airbnb guest, Tenant, Babysitter, Roommate, Friends, Spouse,
Girlfriend/Boyfriend, Visting family, Neighbor, Temporary
worker (who helps you to fix/install appliances in your house),
Strangers who seek for help, None of the above.

(2) Why are you not willing to share your Wi-Fi?
(3) Have you ever shared your homeWi-Fi with [multiple choices]

Airbnb guest, Tenant, Babysitter, Roommate, Friends, Spouse,
Girlfriend/Boyfriend, Visting family, Neighbor, Temporary
worker (who helps you to fix/install appliances in your house),
Strangers who seek for help, None of the above.

(4) How often did you change your Home Wi-Fi password?
Never, Years, Months, Weeks, After sharing with others.

(5) Do you expect people who has access to your home Wi-
Fi could control/monitor your smart home devices without
your approval?
Yes, she/he can control your devices only when connected
to your home Wi-Fi.
Yes, she/he can remotely control your devices (e.g,. control
your devices even when she/he is not connceted to your
home Wi-Fi and not in your house).
No.

(6) Would you grant “admin” permission, which can be can-
celed at any time, to other people (if they ask for it)? (“admin
permission” means the capabilities of editing/configuring de-
vices, adding/removing other users, etc. ) [multiple choices]
Airbnb guest, Tenant, Babysitter, Roommate, Friends, Spouse,
Girlfriend/Boyfriend, Visting family, Neighbor, Temporary
worker (who helps you to fix/install appliances in your house),
Strangers who seek for help, None of the above.

(7) What basic security features do you expect for smart home
devices?

B SURVEY QUESTIONS OF THE USER STUDY
ON THE USABILITY OF CGUARD

Background Introduction
Please watch the background introduction video [49] in the

following link before you answer.
Post-Video Questions

Based on the above background, it is clear that the coexistence of
vendor applications (e.g. Ring app) and third-party applications (e.g.
HomeKit app) poses a risk to the security of IoT devices, enabling
attackers to illegally control target devices in different scenarios.
For this reason, we have designed a multi-channel control platform
for IoT devices, which actively shuts down channels that are not
used by users to prevent unauthorized access by others. You are
invited to evaluate the usability of our solution design based on
your personal experience and preference.

Users can still choose any channel configuration and use the
device after the purchase of the device. For users who prefer differ-
ent channels, we have added the following security policy to the
original features.

(1) The unused channel on your IoT device can enable an at-
tacker to gain access and control over your device. Should
these risks be addressed?
A. Yes, this is a serious risk. If my front door lock (a smart
lock) has such a risk, I want the manufacturer to seriously
fix it.
B. No, I don’t care about the risk even though the attacker
might control my door lock without my consents and aware-
ness.
C. This is a risk, but I have other thoughts.
D. No, I don’t care about this risk on my lock.

(2) If you answered C or D for question 1, please specify your
answer and give a brief description of why you answered in
that way.

(3) Do you want a way to control/close channels that you don’t
use for your device (e.g., a smart lock)? For example, if you
use the manufacturer app, you can simply toggle to switch
on/off the HomeKit channel (by default it is off) on the device.
A. Yes, I want to be able to control channels I am not using.
I think this solution is acceptable and easy to use.
B. Yes, I want to be able to control channels that I am not
using. I think this solution is acceptable, although a bit an-
noying to use.



C. Yes, I want to be able to control channels that I am not
using. But I think this solution is unacceptable with toomany
efforts.
D. No, I do not want to be able to control channels that I am
not using, although this can leave my unused channels open
for the attackers.
E.Other.

(4) Please briefly explain your answer for Question 3.
(5) The scenario: suppose most of your home devices are cur-

rently managed using Apple Home app (the HomeKit chan-
nel). Now you get a brand new smart lock for your front
door, and you configure/connect it with your Apple Home.
In the meantime, do you prefer to...
A. Once you use the Apple app to control the device, the
manufacturer channel is automatically closed to prevent
others from using it to control your device without your
consent (for security, the manufacturer channel will silently
remain closed unless you factory-reset the device).
B. Manually open/close the manufacturer channel by down-
loading/using the manufacturer app.
C. The above options are unacceptable to me. I prefer to take
the risk that my lock is controlled by others without my
consent.
D. The above options are unacceptable to me. I prefer some-
thing else.

(6) Please briefly explain your answer for Question 5.
(7) What other suggestions do you have for the above multi-

channel control security scheme for devices? (Optional)
(8) On a scale of 1-5, how important is it that you are able

to freely choose which channel (manufacturer channel or
HomeKit) you initiate your device on (1 as least important
and 5 as most important)?

(9) Please briefly tell us how much experience you had for using
IoT device(s).
A. I own and use at lease one IoT device
B. My household owns and uses at least one IoT device
C. Both myself and my household owns and uses at least one
IoT device
D. Other:

C INCONSISTENT POLICY BETWEEN DMCS
FROM THE SAME VENDOR

A surprising finding made in our research is that not only have the
DMCs from different parties failed to work together, but even those
from the same manufacturer are often not well synchronized in
terms of security protection.
Flaw 6: HomeKit in-fight. HomeKit enables the user to manage
devices locally and remotely, which are supported by the local
HomeKit DMC (just HAP) and the cloud-based HomeKit DMC
(through iCloud and a HomeKit hub), respectively. These two DMCs
maintain their own access control lists (ACLs) and enforce their
policies independently. In the local DMC, the user who first pairs
with the device is the owner, and only the owner can add other
users (identified by unique public keys) onto the device’s local ACL.
By contrast, in the cloud-based DMC, the user and the device are
managed at the “Home” granularity: one who creates the Home (the

Homekit structure for organizing all devices in a given location such
as a house) is its owner, and is allowed to control, add and remove
devices, invite other users (identified by their Apple ID, usually an e-
mail address) to the Home and give them the permission to add and
remove devices. In the absence of guidance, even the DMCs from
the same party could become inconsistent in their security policy
configuration and enforcement, which can lead to unauthorized
access.

Figure 8: Abusing HomeKit Adding Accessory Workflow

Specifically, in a normal situation, the owner of a Home (the
cloud-based DMC) should also be the owner in the ACLs (for the
local DMCs) of all devices under the Home, while other users are
the guests. This expectation, however, is fallen short of when a
guest adds accessories to the Home: we found from both emulated
HomeKit devices and the workflow of the “adding accessory” pro-
cedure that the guest actually becomes the owner of the new device
through the local DMC, since she is the party who first pairs the
device with the Home app, as shown in Figure 8. Although HomeKit
later will automatically downgrade her to guest and make the Home
owner the owner of the device, there is a short window before the
change of ownership that allows the guest to stealthily add an-
other account (public key) to the device ACL (2a in Figure 8). This
addition will not be communicated to the owner and enable the
guest to send commands authenticated with the key to the device,
even after she has been removed from the owner’s Home. Note
that this trick can be used to allow a malicious guest with the edit
permission (e.g, a tenant who may have the need to add his own
device) to gain stealthy control on a device already in the Home,
by simply removing the device and adding it back to place a new
key on its ACL. This flaw has been acknowledged by Apple and
assigned CVE-2020-9978.
PoC attack. To exploit the flaw above, we conducted an end-to-
end PoC attack on our Yale lock (with iM1 network module) [36].
First, using the Apple Home app we created a Home through an
iPad and added the Yale lock to the Home. Then the owner invited
another user (the adversary, e.g., a tenant) to the Home, and gave
him the right to edit accessories. So, to stealthily control the lock,
the adversary first removed it from the Home and then added it
back, during which no notification was sent to the owner’s Home



app. Specifically in our experiment, we captured the window before
the ownership transfer using Frida [16] to hook the processes apsd
and homed on a jailbroken iPhone to add a new public key (the
secret account) we generated to the lock’s ACL. As a result, later
even after the owner removed the adversary through the Home
app, he was still able to open the lock through the key.
Discussion. Without guidance, the coordination among multiple
DMCs on one device is found to be error-prone even when they
are managed by the same manufacturer. Particularly, our research

shows that even though the cloud-based DMC of HomeKit syn-
chronizes the user list to the ACL of a local DMC on a device, this
coordination does not go the other way around: any update on the
local ACL has never got to the cloud side, allowing a new account
added by the adversary to be unnoticed to the Home owner. The
problem could come from the different ways for these channels to
identify users. The Home app (cloud-based DMC) utilizes the user’s
Apple ID for access control, while the HAP library of the device
(local DMC) relies on the ed25519 public key to authenticate a user.
Since the key cannot be easily mapped to an Apple ID, updating
the ACL changes to the cloud becomes hard.
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